Paper Title:
Effect of Hydroxyapatite Reinforced High Density Polyethylene Composites on Mechanical and Bioactivity Properties
  Abstract

The biomaterial composites consisting of a polymer with a matrix addition of particulate bioactive phase that analogous to the bone microstructure had been extensively studied as a substitute for human’s hard and soft tissues. In this work, HA reinforced HDPE composite (HDPE/HA) was made, with HA contents being up to 50 phr using single screw extruder nanomixer for the compounding process, and later followed by the injection moulding. These characteristics of the HDPE/HA composites were examined using various techniques including differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile testing. Mechanical and thermal properties of the composite are differed when the amount of HA incorporated into the composite were varied. It is shown that HA particles were well dispersed and homogeneously distributed within the HDPE matrix. The elastic modulus and tensile strength were increased when the HA volume percentage increased from 10 phr to 50 phr with corresponding decreases in elongation at break. However no significant influence on thermal stability was found with increasing HA loadings. The enhancement of bioactivity has been proved while incorporation of HA into HDPE composite. SEM-EDX image showed the bulk formation of apatite layers on the composite surface with 30 wt% HA after 7 days immersed in simulated body fluid (SBF) solution. These results suggest the great potential of the composites for a range of temporary application in which bone bonding ability is a desired property.

  Info
Periodical
Key Engineering Materials (Volumes 471-472)
Edited by
S.M. Sapuan, F. Mustapha, D.L. Majid, Z. Leman, A.H.M. Ariff, M.K.A. Ariffin, M.Y.M. Zuhri, M.R. Ishak and J. Sahari
Pages
303-308
DOI
10.4028/www.scientific.net/KEM.471-472.303
Citation
M. R. Husin, M. U. Wahit, M. R. A. Kadir, W. A. W. A. Rahman, "Effect of Hydroxyapatite Reinforced High Density Polyethylene Composites on Mechanical and Bioactivity Properties", Key Engineering Materials, Vols. 471-472, pp. 303-308, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: B.J.M. Leite Ferreira, M.G.G.M. Duarte, M. Helena Gil, Rui N. Correia, J. Román, Maria Vallet-Regí
581
Authors: Frank A. Müller, Kristina Lessnau, Lenka Müller, Marcus W. Rauch, Cordt Zollfrank, Peter Greil
Abstract:A composite material consisting of cellulose and HAp was prepared using coagulation of a native cellulose suspension. Composite tapes with a...
1173
Authors: Akemi A. Nogiwa-Valdez, Dora A. Cortés-Hernández, J.M. Almanza-Robles, Alejandra Chávez-Valdez
Abstract:Zirconia-alumina composites with additions of a CaO-SiO2 glass are prepared by uniaxial pressing and sintering. In order to promote...
193
Authors: Hua Ke, Yu Zhou, De Chang Jia, Cong Qin Ning
Abstract:Hydroxyapatite (HA)/titanium (Ti) composites were successfully fabricated by hot isostatic pressing at 850°C. The microstructure of 7T2HB...
1715
Authors: Jian Peng Zou
Abstract:HA/316L powder asymmetrical functionally gradient biomaterial (FGM) with varying 316L content at 100vol%, 80vol%, 60vol%, 40vol%, 20vol%,...
1049