Paper Title:
PVDF-HFP-NH4CF3SO3-SiO2 Nanocomposite Polymer Electrolytes for Protonic Electrochemical Cell
  Abstract

This paper describes the preparation and characterization of proton conducting nanocomposite polymer electrolytes based a polyvinylidene fluoride-co-hexapropylene (PVDF-HFP) for protonic electrochemical cells. The electrolytes were characterized by Differential Scanning Calorimetry (DSC) and Impedance Spectroscopy (IS). It is observed that the crystallinity of the PVDF-HFP-NH4CF3SO3 system slightly increase upon addition of SiO2 nanofiller. The PVDF-HFP-NH4CF3SO3-SiO2 electrolytes reveals the existence of two conductivity maxima at 1 and 4 wt% of SiO2 concentration attributed to two percolation thresholds in the nanocomposite polymer electrolyte. The optimum value of conductivity of 1.07 × 10-3 S cm-1 is achieved for the nanocomposite polymer electrolyte film with 1 wt% SiO2. Protonic electrochemical cells was fabricated with a configuration Zn + ZnSO4.7H2O + PTFE (anode) | PVDF-HFP:NH4CF3SO3+SiO2 (electrolyte) | MnO2 + PTFE (cathode). The maximum open circuit voltage (OCV) is ~1.50 V and discharge characteristics of the cell were studied at different loads of resistances.

  Info
Periodical
Key Engineering Materials (Volumes 471-472)
Edited by
S.M. Sapuan, F. Mustapha, D.L. Majid, Z. Leman, A.H.M. Ariff, M.K.A. Ariffin, M.Y.M. Zuhri, M.R. Ishak and J. Sahari
Pages
373-378
DOI
10.4028/www.scientific.net/KEM.471-472.373
Citation
N. Muda, S. Ibrahim, N. Kamarulzaman, M. Nor Sabirin, "PVDF-HFP-NH4CF3SO3-SiO2 Nanocomposite Polymer Electrolytes for Protonic Electrochemical Cell", Key Engineering Materials, Vols. 471-472, pp. 373-378, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Thanganathan Uma, Masayuki Nogami
Abstract:Sol-gel derived high proton conducting P2O5-SiO2-PMA (phosphomolybdic acid, H3PMo12O40 nH2O) glasses as electrolyte were used for the H2/O2...
149
Authors: Go Hiramatsu, Yoshihiro Hirata, Soichiro Sameshima, Naoki Matsunaga
Abstract:Gd-doped ceria electrolyte (Ce0.8Gd0.2O1.9, GDC, 700 μm thick), 30 vol% Ni-GDC cermet anode and perovskite cathode La0.6Sr0.4CoO3 (LSC) or...
985
Authors: Zhen Lin, Chang Hui Wang, Yu Liu
Abstract:A simple model specific to static water feed solid polymer electrolyte (SPE) water electrolysis cell is constructed containing Butler-Volmer...
750
Authors: Shi Gang Yu, Hui He, You Sheng Xu
Chapter 1: Development and Utilization of Solar Energy
Abstract:A composite three-dimensional mathematical model of proton exchange membrane fuel cell is proposed, the corresponding finite element method...
376
Authors: Nor Liza Mohd Zawi, Raihan Othman, M.H. Ani, Hens Saputra
Chapter 5: Energy Storage Technologies and Storage Battery
Abstract:We investigate Zn/MnO2 Leclanché cell employing inorganic MCM-41 membrane separator. MCM-41 membrane is developed onto zinc anode...
1055