Paper Title:
The Formation and Occurrence of Non-Metallic Inclusions of Si-Doped Steel during Continuous Casting
  Abstract

Inclusion in steel material plays a decisive role on the purity of steels that becomes more important in the energy critical age. This study was focused on the number and morphology of inclusions with different cooling rate in the continuous casting process. A low carbon steel with 3.36 wt% silicon content was used as test material, which was soaked at 1100°C, 1250°C and 1400°C for 2 hours. The analyzed results of microstructure and chemical compositions showed the inclusions were not dissolved into matrix but formed as compounds like oxide, sulfide, and nitride after reheating at 1100°C. However, the inclusion size and average number possessed increasable trend, compared to as-cast sample. Manganese sulfide began to be dissolved into matrix by reheating at 1250°C. Some evidences showed the dissolution of aluminum nitride under the reheating at 1400°C. The inclusion size varied from 8 μm to 3 μm, and average number decreased with increasing soaking temperature.

  Info
Periodical
Edited by
Chin-Yi Chen and Jing-Tang Chang
Pages
13-21
DOI
10.4028/www.scientific.net/KEM.479.13
Citation
D. Y. Lin, S. M. Yang, "The Formation and Occurrence of Non-Metallic Inclusions of Si-Doped Steel during Continuous Casting", Key Engineering Materials, Vol. 479, pp. 13-21, 2011
Online since
April 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Lan Chen, Ren Wei Yang
Chapter 2: Simulation and Engineering Optimization
Abstract:The filling process, solidification process, gasification process and node temperature change of special-shaped stainless steel stirrer via...
479