Paper Title:
Modelling the Effects of Material Property and Dimension on the Heating of Silicon with Induction Directional Casting Furnace
  Abstract

Directional Casting of silicon is a cost effective process to grow multi-crystalline Si ingots for wafers of solar cells. An appropriate melting process of polycrystalline silicon is closely related to the material properties and the size of graphite susceptors. These parameters have great influence not only on the melting temperature of silicon melt but also on the efficiency of induction heating, impurity distribution, dendrite and the direction of crystalline grains, which ultimately affect the properties of the solar cells. Therefore, in order to obtain good quality and energy efficiency of growth of polycrystalline silicon, one needs to know how the temperature fields relate to the processing parameters such as different sizes and properties of graphite susceptors in the furnace. In this paper, the influences of different properties such as density, electrical conductivity, thickness of graphite susceptor and cooling base-plate on the temperature of silicon with induction heating have been studied. To have an optimized control of processing parameters, a finite element-based software was used to simulate the temperature distribution of silicon melt in a polycrystalline vacuum induction refining furnace. The simulation takes into account the interaction of the induced eddy current and the heat transfer coupling in the vacuum induction furnace. Some of the modelling results are summarized as follows: 1. The material properties of the graphite susceptor have great influence on the temperature distribution. 2. The higher the operating frequency of the current, the sooner it reaches the melting temperature. 3. Base-plate made of stainless steel 304 performs better than the copper base-plate for the control of temperature distribution. 4. There exists an optimal thickness of the graphite susceptor, and the rise of temperature is not linearly proportional to the thickness of the graphite susceptor.

  Info
Periodical
Edited by
Chin-Yi Chen and Jing-Tang Chang
Pages
132-142
DOI
10.4028/www.scientific.net/KEM.479.132
Citation
K.L. Lian, S. S. Lian, Y.H. Chen, S.C. Chu, S. Tsao, "Modelling the Effects of Material Property and Dimension on the Heating of Silicon with Induction Directional Casting Furnace", Key Engineering Materials, Vol. 479, pp. 132-142, 2011
Online since
April 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Akikazu Matsumoto, Naoyuki Kanetake
Abstract:The spheroidal graphite cast iron is widely used as a structural material in an industrial field. Possibility to be able to use by improving...
1123
Authors: Mitsuharu Takita
Abstract:Semi-solid metal processing with the cooling plate technique is one of the key technologies for producing advanced materials. The multitude...
79
Authors: Hong Liang Zheng, Yu Cheng Sun, Ning Zhang, Kai Zhang, Xue Lei Tian
Abstract:Shrinkage porosity is often found in Spheroidal graphite iron (S. G. Iron) castings because of the mushy zone and special volume change...
190
Authors: Mirsadegh Seyedzavvar, Mohammad Reza Shabgard
Chapter 9: Other Related Process
Abstract:This paper presents the results of experimental studies carried out to conduct a comprehensive investigation on the influence of tool...
988