Paper Title:
Molecular Dynamics Simulation of Aluminium Thin Film Surface Activated Bonding
  Abstract

This study used molecular dynamics simulations with an embedded-atom method (EAM) potential to investigate the effect of surface roughness on the surface activated bonding (SAB) of aluminium thin films. The simulations started with the bonding process and followed by the tensile test for estimating bonding strength. By averaging the atomic stresses over the entire system, the stress-time curves for the bonded films under a tensile condition were predicted. Moreover, the evolution of the crystal structure in the local atomic order was examined by the common neighbour analysis. The simulated results show that the decrease in the surface roughness of thin film improves the bonding strength. The observed recrystallization processes inside the bonded thin films also reveal that the plastic deformation of the aluminium surface due to atomic attracting force compensates surface roughness.

  Info
Periodical
Edited by
Daizhong Su, Kai Xue and Shifan Zhu
Pages
127-130
DOI
10.4028/www.scientific.net/KEM.486.127
Citation
C. C. Chang, "Molecular Dynamics Simulation of Aluminium Thin Film Surface Activated Bonding", Key Engineering Materials, Vol. 486, pp. 127-130, 2011
Online since
July 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Xiao Guang Guo, Dong Ming Guo, Ren Ke Kang, Zhu Ji Jin
Abstract:Molecular dynamics (MD) simulation is carried out to analyze the effects of abrasive ngrain size and cut depth on monocrystal silicon...
286
Authors: Jia Chun Wang, Ji Min Zhang, Na Li, Yun Peng Kou
Abstract:In nanometric cutting process, the actual material removal can take place at atomic level, which makes it difficult or impossible to observe...
368
Authors: Takuya Uehara
Chapter 2: Manufacturing Systems and Automation
Abstract:Molecular dynamics simulations were carried out to investigate the plastic deformation mechanism of fcc crystalline materials using the...
321
Authors: Jen Ching Huang, Yi Chia Liao, Huail Siang Liu, Fu Jen Cheng
Chapter 1: Nanoscience and Nanotechnology
Abstract:This paper studies the deposition process and mechanical properties of Cu thin films deposited on single crystal copper substrates with...
37
Authors: Akinjide O. Oluwajobi, Xun Chen
Abstract:There is a need to choose appropriate interatomic empirical potentials for the molecular dynamics (MD) simulation of nanomachining, so as to...
194