Paper Title:
The Influence of the Weld Width on Fracture Behaviour of the Heterogeneous Welded Joint
  Abstract

Since welded constructions are widely used in engineering, a certain flaws in welded joints may occur either in process of welding or in exploitation period. Easiest way to prolong working life of such welded construction is to repair welded joint to eliminate possibility of construction failure. Process of repair welding usually gives heterogeneous welded joints because during process of repair additional material is introduced into welded joint, resulting in heterogeneity from the presence of materials in welded joint point of view. Such difference in materials usually results in yield strength difference between materials, represented with mismatch ratio, and it is commonly present in welds where high strength low-alloyed (HSLA) steels were welded. Since I butt welded joints are very common in welding, a systematic investigation of such welds is performed and presented in this paper. Therefore in this investigation the influence of present material in heterogeneous weld and geometry of weld is investigated in context of fracture resistance of welded joint represented as yield load solutions in the first place. A flaw in form of crack was implemented in such heterogeneous weld and using finite element method yield load solutions for different combinations of weld geometry and material strength are obtained and presented in form of diagrams.

  Info
Periodical
Key Engineering Materials (Volumes 488-489)
Edited by
Z. Tonković and M.H. Aliabadi
Pages
367-370
DOI
10.4028/www.scientific.net/KEM.488-489.367
Citation
P. Konjatić, D. Kozak, N. Gubeljak, "The Influence of the Weld Width on Fracture Behaviour of the Heterogeneous Welded Joint", Key Engineering Materials, Vols. 488-489, pp. 367-370, 2012
Online since
September 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jun Ru Yang, Zhao Qian Li, Chuan Zhen Huang, Quan Wei Wang
Abstract:Basing on the theoretical study on the stress intensity factor (SIF) of the crack inclined across the interface of the cermet cladding part,...
213
Authors: Yan Hua Zhao, Hua Zhang, Wei Dong
Abstract:The wedge splitting (WS) test is now a promising method to perform stable fracture mechanics tests on concrete-like quasi brittle materials....
425
Authors: Zhi Ping Yin, Jiong Zhang, Jin Guo, Qi Qing Huang
Abstract:The finite element software ANSYS was employed to create a finite element model of the cracked wing beam integrated structure, and the stress...
101
Authors: Yu E Ma, Bao Qi Liu, Zhen Qiang Zhao
Chapter 2: Material Science and Engineering
Abstract:Al-Li alloy 2198-T8 was used in the fuselage application. Integral fuselage panels were joined by double friction stir welds. Fatigue tests...
651
Authors: Jun Ru Yang, Gong Ling Chen, Li Li Zhang, Jing Sun
VI. Analytical and Numerical Methods for Materials Processing
Abstract:Based on the theoretical study on the tip stress intensity factor (SIF) of the crack normal to and dwelling on the interface, using the...
525