Paper Title:
Bone-Cement Interface Micromechanical Model under Cyclic Loading
  Abstract

Total hip replacement is one of the most common techniques in orthopaedic surgery, and one of the most important surgical advances of the last XX century. Normally, implant is fixed to bone by means of a polymer material known as bone cement, building an interface between implant and bone regions. Microscopically, two interfaces can be distinguished, namely, bone-cement and implant-cement interfaces. One of the main causes of failure is implant loosening due to fatigue of one of the two microscopic interfaces. In this work, a micromechanical analysis of bone-cement interface under cyclic forces is introduced. Both bone and cement are considered using different models based on fatigue damage over a statistically representative volume element (RVE) of the microstructure. This technique allows to homogenize mechanical stresses of the RVE yielding the effective macroscopic behavior of the bone-cement interface, avoiding experimental fitting case to case, once the interface geometry and mechanical characterization of the involved phases are known.

  Info
Periodical
Key Engineering Materials (Volumes 488-489)
Edited by
Z. Tonković and M.H. Aliabadi
Pages
391-394
DOI
10.4028/www.scientific.net/KEM.488-489.391
Citation
J.A. Sanz-Herrera, H. Esteban, M.P. Ariza, "Bone-Cement Interface Micromechanical Model under Cyclic Loading", Key Engineering Materials, Vols. 488-489, pp. 391-394, 2012
Online since
September 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: H.Y. Yu, Zhen Bing Cai, Zhong Rong Zhou, Min Hao Zhu
Abstract:Under simulated human physiological solution, the fretting behaviors of flat cortical bone specimen from fresh human femur in the transverse...
607
Authors: Xue Jun Wang, R. Wang, J.M. Luo, Ji Yong Chen, Xing Dong Zhang
Abstract:It is important to obtain mechanical coupling between dental implants and bone, because the lack of mechanical coupling may cause bone loss...
657
Authors: Jung Hwa Hong, Young Hwan Park, Sang Ok Ko, Soon Hyuck Lee, Gon Khang
Abstract:In this study, a minimally invasive assessment using bone strain generated potential (SGP) was developed to examine the amount of...
1082
Authors: Jung Hwa Hong, Young Hwan Park, Sang Ok Ko
Abstract:Osseointegration (OI) could be described as the modality for stable fixation of titanium implant to bone structure. The OI has become a...
1173
Authors: Jung Hwa Hong, Sang Ok Ko, Soon Hyuck Lee
Abstract:"Osseo" refers to bone and "integration" refers to how a prosthesis can be integrated with the bone in residual limbs both arms and legs....
1569