Paper Title:
Investigations on Degradable and Figuline Calcium Alkaline Phosphate Cements with Multimodal Particle Size Distribution
  Abstract

The paper presented here deals with rheological and hardening properties during the setting reaction, and density and compressive strength after the final setting of a figuline composite consisting of Ca2KNa(PO4)2 and 2wt% medium gel strength gelatin. Compared to the composite with monomodal particle size distribution (d50=7.18µm; span=3.9) and its properties during and after setting reaction, the goal of this work is to increase the resulting product compressive strength by mixing different particle sizes in order to obtain bi- and trimodal distributions. For the bimodal powder mixtures the ratio in diameter (dcourse/dsmall) was chosen with 7/1 and volume ratio dcourse/dsmall was 70/30%. For the trimodal powder mixtures the ratio in diameter (dcourse/dmedium/dsmall) was chosen with 70/7/1 and volume ratio dcourse/dmedium/dsmall was set to 44/28/28%.After establishing an adequate crushing and sieving process the tap density and powder density of each fraction was determined. Subsequently, the different particle sizes were mixed and the densities and the Hausner ratio were determined again. The mixtures show an increase in both densities especially the tap density increased significantly. Rheological investigations show that the graphs of storage and loss moduli of the multimodal powder mixtures respectively are similar. The characteristic setting times show a slight decrease compared with the monomodal composite but not significantly different data. When comparing the resulting compressive strength of cylindrical samples, which were stored direct after reaching the initial setting time under physiological conditions, the studies illustrated in all cases for the multimodal mixtures a significant increase in compressive strength and a higher density.

  Info
Periodical
Key Engineering Materials (Volumes 493-494)
Main Theme
Edited by
Eyup Sabri Kayali, Gultekin Goller and Ipek Akin
Pages
355-360
DOI
10.4028/www.scientific.net/KEM.493-494.355
Citation
F. Dombrowski, R. Hoffmann, U. Ploska, H. Marx, G. Berger, "Investigations on Degradable and Figuline Calcium Alkaline Phosphate Cements with Multimodal Particle Size Distribution", Key Engineering Materials, Vols. 493-494, pp. 355-360, 2012
Online since
October 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Kyung Sik Oh, Soo Ryong Kim
Abstract:Effect of the starting compostion was studied in bone cement containg coarse b-tricalcium phosphate (b-TCP) granules which was very dense and...
141
Authors: Sirirat T. Rattanachan, Charussri Lorpayoon, Piyanan Bunpayun
Abstract:Crystallized apatite behaved to plaster of Paris was prepared by the chemical method. Apatite powder was mixed with chitosan. In this study,...
839
Authors: T. Shanmugasundaram, V. Subramanya Sarma, B.S. Murty, Martin Heilmaier
Abstract:The microstructure and mechanical properties of nano-crystalline 2219 Al alloy (Al-6.4Cu-0.29Mn, all in wt %) was studied. Nanocrystalline...
97
Authors: Szilvia Eosoly, Stefan Lohfeld, Dermot Brabazon
Abstract:Selective laser sintering (SLS) has the potential to fabricate bioresorbable polymer / ceramic composite scaffolds with pre-designed external...
659