Paper Title:
Preparation of Titanium/Strontia Composite by Powder Metallurgy for Biomedical Application
  Abstract

In this study, a Titanium (Ti) / Strontia (SrO) composite was prepared using powder metallurgy, with the aim of obtaining advanced Ti-based composites for use as bone implant materials. Ti/SrO composites with 3 wt% SrO were fabricated using spark plasma sintering (SPS) and vacuum sintering (VS) processes. The particle morphology of ball-milled powders and the microstructure of the Ti/SrO composites were analyzed by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) equipped with energy dispersive X-spectroscope (EDX). The mechanical properties of the Ti/SrO composite were investigated using nanoindentation and hardness tests. The results showed that the Vickers hardness and nanohardness of the Ti/SrO composites fabricated by both processes were significantly higher than those of pure Ti. The Vickers hardness and nanohardness of Ti/SrO composites fabricated by the SPS process were higher than those prepared using the vacuum sintering process. The elastic modulus of Ti/SrO composites fabricated by the SPS process was higher than those samples fabricated by the vacuum sintering process which was similar to that of pure Ti.

  Info
Periodical
Chapter
Chapter 5: Biomedical Titanium Alloys
Edited by
Ma Qian
Pages
248-253
DOI
10.4028/www.scientific.net/KEM.520.248
Citation
Y. Wang, C.'e Wen, P. D. Hodgson, Y. C. Li, "Preparation of Titanium/Strontia Composite by Powder Metallurgy for Biomedical Application", Key Engineering Materials, Vol. 520, pp. 248-253, 2012
Online since
August 2012
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: F. Romero, Vicente Amigó, M.D. Salvador, A. Vicente
Abstract:Titanium metal matrix composites were produced. The powder metallurgy route applied was a conventional route consisting of blending titanium...
817
Authors: Jung Ho Ahn, Yan Li Wang, Yong Jin Kim, Sung Jin Kim, Hyung Sik Chung
Abstract:We have synthesized multi-wall carbon nanotube (MWCNT)-reinforced Al matrix composites. The Al/MWCNT composite powders were prepared by ball...
860
Authors: Tao Jiang, Hai Yun Jin, Zhi Hao Jin, Jian Feng Yang, Guan Jun Qiao
Abstract:The machinable B4C/BN ceramics composites were fabricated by hot-pressing sintering process at 1850oC for 1h under the pressure of 30MPa....
53
Authors: Yan Jun Wang, Bin Wang, Li Ying Yang, Shou Ren Wang
Abstract:High speed steel based ceramic preforms with three-dimensionally interpenetrated micropores were fabricated using the mixture of TiH2, CaCO3...
625
Authors: Dong Chen, Zhe Chen, Peng Zhang, Yi Jie Zhang, Haiheng Ma, Hao Wei Wang
Chapter 5: Metal Alloy Materials
Abstract:In-situ TiB2 particles reinforced AA7055 composites were fabricated through mixed-salts route and their bending properties were...
1005