Paper Title:
Fatigue Performance of Low Rigidity Titanium Alloy for Biomedical Applications
  Abstract

Microstructures of Ti-29Nb-13Ta-4.6Zr (TNTZ) aged at temperatures between 573 and 723 K after solution treatment at 1063 K have super fine omega phase, or􀀂 both super fine alpha and omega phases, respectively in beta phase with an average grain diameter of 20 µm. Plain fatigue strength of TNTZ aged after solution treatment is much greater than that of as-solutionized TNTZ in both low cycle fatigue and high cycle fatigue life regions. This is due to the improvement of the balance of strength and ductility by the precipitation of alpha phase. Fretting fatigue strength of TNTZ conducted with various heat treatments decreases dramatically as compared with their plain fatigue strength in both low cycle fatigue and high cycle fatigue life regions. In this case, the decreasing ratio of fretting fatigue life increases with increasing the small crack propagation area where both the tangential force and frictional force at the contact plane of pad exist. In fretting fatigue in air, the ratio of fretting damage (Pf/Ff), where Pf and Ff stand for plain fatigue limit and fretting fatigue limit, respectively, increases with increasing elastic modulus. In fretting fatigue in Ringer’s solution, the passive film on specimen surface is broken by fretting action in TNTZ, which have excellent corrosion resistance, and, as a result, corrosion pits that lead to decreasing fretting fatigue strength especially in high cycle fatigue life region, are formed on its surface.

  Info
Periodical
Materials Science Forum (Volumes 449-452)
Edited by
S.-G. Kang and T. Kobayashi
Pages
1265-1268
DOI
10.4028/www.scientific.net/MSF.449-452.1265
Citation
T. Akahori, M. Niinomi, H. Fukui, A. Suzuki, "Fatigue Performance of Low Rigidity Titanium Alloy for Biomedical Applications", Materials Science Forum, Vols. 449-452, pp. 1265-1268, 2004
Online since
March 2004
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: T.S. Srivatsan, Mithun Kuruvilla, Lisa Park
Abstract:In this technical manuscript the cyclic stress amplitude controlled fatigue properties and fracture behavior of an emerging titanium alloy...
271
Authors: Stanislav Seitl, Pavel Hutař, Zdeněk Knésl
Abstract:The formulations of fatigue crack growth prediction are still mostly based on phenomenological models. A commonly used formula in the field...
557
Authors: Kengo Narita, Mitsuo Niinomi, Masaaki Nakai, Toshikazu Akahori, Harumi Tsutsumi, Kazuya Oribe
Abstract:Implanting a spinal fixture using metallic rods is one of the effective treatments for spinal diseases. Because cyclic bending stress is...
400
Authors: Shabnam Hosseini, Mohammad Bagher Limooei
Chapter 1: Metal Materials
Abstract:In this research, fatigue behaviour of Ti-6Al-4V alloy was investigated for smooth and notched specimens with stress concentration...
7
Authors: Yan Zeng Wu, Qing Yuan Wang, Qiao Lin Ouyang
Chapter 7: Building Materials
Abstract:Using the ultrasonic fatigue test method, the influence of subjection to plasma nitriding surface modifications on the ultra-high cycle...
1731