Paper Title:
A New Model for Predicting Small Crack Growth Rates
  Abstract

A new model for predicting the small-crack growth rates is proposed under the constant amplitude loading. With the use of two important parameters, the transition crack length a0 and the barrier characteristic parameter d*, the new model can reflect the abnormal feature of small-crack growth. The effect of crack closure is considered in the model as well. The model is shown to provide a better correlation to the experimental results for the Ti-6Al-4V alloy under various stress levels at a stress ratio of R = 0.4.

  Info
Periodical
Materials Science Forum (Volumes 471-472)
Edited by
Xing Ai, Jianfeng Li and Chuanzhen Huang
Pages
330-334
DOI
10.4028/www.scientific.net/MSF.471-472.330
Citation
H. C. Zhang, K.Z. Huang, J.H. Cheng, "A New Model for Predicting Small Crack Growth Rates", Materials Science Forum, Vols. 471-472, pp. 330-334, 2004
Online since
December 2004
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Jun Si, Fu Zhen Xuan, Shan Tung Tu
Abstract:The interaction behavior of two non-aligned through-wall cracks in flat plates is investigated by the finite element method (FEM) under...
105
Authors: Jia Zhen Zhang, Xiao Dong He, Shan Yi Du
Abstract:In-situ SEM observations have revealed that fatigue crack propagation in aluminium alloys is caused by the shear band decohesion around the...
293
Authors: Stanislav Seitl, Pavel Hutař, Zdeněk Knésl
Abstract:The formulations of fatigue crack growth prediction are still mostly based on phenomenological models. A commonly used formula in the field...
557