Paper Title:
Research and Application on High Efficiency Reversible Cutting Technique
  Abstract

Reversible cutting method is a research thesis proposed to shorten processing route, decrease tool number and handling time, increase machining efficiency. There are three movement ways, i.e. reversible feed motion, reversible primary motion and reversible composite motion. Primary motion is done by workpiece, conventional or reversible feed motion is done by cutting tool in the way of reversible feed motion, e.g. turning. Cutting velocity is passed to cutting tool, clockwise or anti-clockwise cutting movement is done by cutting tool in the way of reversible primary motion, e.g. milling, shaping, drilling (spade drill), reaming. Primary and feed motions are all reversible in composite motion, e.g. turn-milling. Chip deformation and machined surface with reversible finishing is discussed. A mechanical analysis is carried out to the workpiece deformation of slender shaft turning in normal direction and reversible direction. The result has been verified by experiments. Experimental data for the range of cutting parameters tested showed that the reversible fine machining produce the compressive residual stresses at the surface, which are critical in the performance of the machined components. Experimental research indicted that the results of micro-hardness of reversible fine machining technique are smaller than that of general fine machining show that decreased plastic deformation of the surface layer and work-hardening. It can be adopted such planning which rough machining during advance stroke and fine machining during return stroke in machining process.

  Info
Periodical
Materials Science Forum (Volumes 471-472)
Edited by
Xing Ai, Jianfeng Li and Chuanzhen Huang
Pages
825-829
DOI
10.4028/www.scientific.net/MSF.471-472.825
Citation
W. G. Wu, S. Q. Pang, Q. X. Yu, "Research and Application on High Efficiency Reversible Cutting Technique", Materials Science Forum, Vols. 471-472, pp. 825-829, 2004
Online since
December 2004
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ming Chu Kong, Wing Bun Lee, Chi Fai Cheung, Suet To
Abstract:The formation of tool marks in single-point diamond turning is a fundamental study of the effect of materials swelling and recovery on...
544
Authors: Yuan Wei Wang, Song Zhang, Jian Feng Li, Tong Chao Ding
Abstract:In this paper, Taguchi method was applied to design the cutting experiments when end milling Inconel 718 with the TiAlN-TiN coated carbide...
911
Authors: B.J. Xiao, Cheng Yong Wang, Ying Ning Hu, Yue Xian Song
Abstract:A two-dimensional orthogonal thermal-mechanical finite element model by Deform2D finite element analysis software is established in the...
590
Authors: Ji Cai Kuai
Chapter 3: Chemical and Biomedical Engineering
Abstract:The dynamic minimum thickness of cut for the ultra-precision machining surface quality is important influence. Between tool and the workpiece...
1246
Authors: Jin Ling Song
Chapter 3: Materials Forming, Machining and Joining
Abstract:Based on the engine lathe, the vibratory turning experiment system was built up with low frequency of the mechanical vibratory device....
1355