Paper Title:
Development of Ti-30 mass% Ta Alloy for Biomedical Applications
  Abstract

In the present study, the effects of Ta content on the dynamic Young’s modulus and tensile properties of Ti−Ta alloys were investigated in order to find a Ti−Ta alloy that gives low modulus and high strength for biomedical applications. For this purpose, the ingots of Ti−Ta alloys with Ta contents from 10 to 50 mass % were melted, and then rolled into the plate of 3 mm thick. All the specimens were solution treated at 1223 K in the b field for 3.6 ks and then quenched in ice water. Subsequently, some of them were aged at 773 K for 259.2 ks followed by a rapid quenching in ice water. The corrosion capacity and biocompatibility of typical Ti−Ta alloy were also evaluated. The experimental results indicate that the Ti−30% Ta alloy has better mechanical biocompatibility, corrosion capacity and cyto-toxicity than Ti−6Al−4V alloy used as a standard biomaterial, and thus it will be of considerable development for biomedical applications.

  Info
Periodical
Materials Science Forum (Volumes 475-479)
Main Theme
Edited by
Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie
Pages
2309-2312
DOI
10.4028/www.scientific.net/MSF.475-479.2309
Citation
Y. L. Zhou, M. Niinomi, T. Akahori, H. Fukui, "Development of Ti-30 mass% Ta Alloy for Biomedical Applications", Materials Science Forum, Vols. 475-479, pp. 2309-2312, 2005
Online since
January 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhen Tao Yu, Lian Zhou, Lijuan Luo, Maohong Fan, Yanyan Fu
Abstract:The effects of alloying elements such as Mo, Sn, Zr, Nb, deforming-rate, solid solution and aging treatment on mechanical property and...
595
Authors: Jeong Min Kim, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract:Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the...
374
Authors: N. R. Ha, Z. X. Yang, Kyu Hong Hwang, J. K. Lee
Abstract:Pure Titanium alloys are superiorities of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy...
177
Authors: Zhen Tao Yu, Gui Wang, Xi Qun Ma, Matthew S. Dargusch, Jian Ye Han, Sen Yu
Abstract:The effects of alloy chemistry and heat treatment on the microstructure and mechanical properties of Ti-Nb-Zr-Mo-Sn near  type titanium...
303
  | Authors: Atsunori Kamegawa, Toru Iwaki, Masuo Okada
Abstract:Effects of hydrogenation process of the microstructure, electrical conductivity and mechanical properties for the Cu-(1~3) mass%Ti alloys...
1319