Paper Title:
Relationship between Palladium Morphology and Thermodynamics in Palladium-Hydrogen System
  Abstract

The pressure-composition (P-C) isotherms of protium and deuterium in Pd sponge particles have been measured over a temperature range from 278K to 323K. Based on these data and combined with literature data, the relationship between the Pd crystal type, particle size and thermodynamic properties in the Pd-H system was investigated. The saturation solubility of hydrogen in solid solution region ( a-phase) and the absorption plateau pressure increase with the decreasing Pd particle size at ambient temperature, but the desorption plateau pressure does not change with Pd morphology. The effect of Pd morphology on above two parameters gets weaker at higher temperature and the difference of plateau pressure among several different Pd morphologies disappears at higher temperature, such as 373K. The absolute value of phase transformation enthalpy and entropy from solid solution phase to hydride phase decrease with the decreasing particle size of Pd, but which are the smallest in single crystal Pd. The degree of hysteresis effect in Pd-H system depends on the background density in the sample, so it is the strongest in Pd sponge.

  Info
Periodical
Materials Science Forum (Volumes 475-479)
Main Theme
Edited by
Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie
Pages
2485-2488
DOI
10.4028/www.scientific.net/MSF.475-479.2485
Citation
T. Tang, S.-I. Guo, G. Lu, "Relationship between Palladium Morphology and Thermodynamics in Palladium-Hydrogen System", Materials Science Forum, Vols. 475-479, pp. 2485-2488, 2005
Online since
January 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Amelia Montone, Jasna Grbović Novaković, Lj. Stamenković, Anna Lisa Fiorini, Luca Pasquini, Ennio Bonetti, Marco Vittori Antisari
Abstract:The influence of the Co addition and synthesis route on desorption properties of MgH2 were investigated. Ball milling of MgH2-Co blends was...
79
Authors: Amelia Montone, Marco Vittori Antisari, N. Abazović, Jasna Grbović Novaković, Luca Pasquini, Ennio Bonetti, Anna Lisa Fiorini
Abstract:Hydrogen, being a regenerative and environmentally harmless fuel, can play a crucial role in the energetic scenario of the near future. In...
335
Authors: Fabiana C. Gennari, Marcelo R. Esquivel
Abstract:Structure, microstructure and hydriding properties of mechanically alloyed 2Mg-Ni mixture were investigated. Two different nanocomposites...
52
Authors: Ke Zhang, Xiao Yu Zhao, Shu Li Liu, Zhong Qiu Cao, Hui Zhang
Chapter 9: Energy Chemical Engineering
Abstract:Mg(NH2)2 was synthesized by first high energy milling MgH2 powder in a 99.995% NH3 atmosphere and then heat treating at 300oC, and hydrogen...
3609
Authors: Qi Wan, Ping Li, Teng Wang, Xuan Hui Qu
Chapter 1: Material Study, Physical and Chemical Processes in Materials
Abstract:Two kinds of novel materials, Mg-1.6mol%Ni-0.4mol%NiO-2mol%MF (MF=NbF5, CrF3), along with Mg-1.6mol%Ni-0.4mol%NiO for comparison, were...
31