Paper Title:
Refining of Metallurgical-Grade Silicon by Thermal Plasma Arc Melting
  Abstract

The refining of MG-silicon (MG-Si) is closely related to the cost and purity of solar-grade silicon (SoG-Si) as well as semiconductor-grade silicon (SeG-Si). Plasma arc refining of MG-silicon is one of the alternative and effective route to remove the impurities in silicon. In this study, a 60KW transfer-arc plasma melting furnace operated in105Pa was used to purify the MG-Si by different kinds of working gas, which was composed of 100%Ar, 95%Ar+5%O2, 95%Ar+5%H2, and 70%Ar+30%H2 respectively. During the processing, an optical spectrometer was used to monitor the changes of compositions. The experimental results show that the removal rate of impurities of aluminum, calcium, sodium, barium...etc. in silicon with plasma working gas containing oxygen, and hydrogen are higher than pure Ar plasma. Especially with 30% H2 plasma, the removal rate of the Na and Ba could reach 100% and the removal rate of Ca and Al could also achieve to 99.5% and 89.5% respectively. For the impurities of boron in the MG-Si, the elimination rate of hydrogen-mixed plasma could be as high as 76%.The in-situ monitoring of plasma refining is accomplished with the monochromators in the range of visible light’s wavelength. From the results of chemical analysis and optical spectrograph, it revealed that elimination rate of Fe and Al was higher in hydrogen-contained plasma arc than in pure Ar plasma, As to the refining of carbon, the hydrogen and oxygen mixed plasma arc are also efficient to reduce the carbon content in silicon, which could be decreased from 310 ppm to 60~70 ppm.

  Info
Periodical
Materials Science Forum (Volumes 475-479)
Main Theme
Edited by
Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie
Pages
2595-2598
DOI
10.4028/www.scientific.net/MSF.475-479.2595
Citation
S. Tsao, S. S. Lian, "Refining of Metallurgical-Grade Silicon by Thermal Plasma Arc Melting", Materials Science Forum, Vols. 475-479, pp. 2595-2598, 2005
Online since
January 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Duo Sheng Li, Dun Wen Zuo, Rong Fa Chen, Bing Kun Xiang, Li Gang Zhao
Abstract:DC-Plasma arc behavior is one of the key factors on growth of diamond film. The results show that keeping steady DC-Plasma arc can grow...
385
Authors: Bai Ping Lu, Can Cheng Liu, Hui Xu
Chapter 3: Chemical Separation Engineering
Abstract:Cu-11Ni-2W alloys have been prepared by vacuum non-consumable arc-melting and high-frequency induction melting injection moulding. The...
508
Authors: Bai Ping Lu, Hui Xu, Can Cheng Liu
Chapter 1: Composites
Abstract:Cu-10Ni-5Mo alloys have been prepared by arc-melting and induction melting injection moulding. The effects of melting processes on the...
289
Authors: Yao Chun Yao, Takayuki Watanabe, Kazuyuki Yatsuda
Chapter 1: Materials Design
Abstract:A stable 12-phase AC arc was successfully developed and applied in the field of glass in-flight melting, and the arc discharge behavior was...
615
Authors: Wen Qing Song, Jing Fu Chai, Wen Ji Xu
Chapter 3: Steel and Iron Technology
Abstract:Plasma arc bending of laminated clad metal sheets (LCMS) is a newly developed technique that produces deformation in the LCMS by thermal...
468