Paper Title:
Criterion of Mechanical Instability in Inhomogeneous Atomic System
  Abstract

The mechanical stability of a material is a fundamental issue in strength of atomic systems. Although the criterion of the mechanical stability of homogeneous structures such as perfect crystals have been successfully investigated so far, the criterion has not been able to be precisely evaluated in the cases of non-uniform deformations or bodies of inhomogeneous atomic structures. Now we present an instability criterion of an arbitrary atomic structure based on the energy balance of the whole system. This method gives the mathematically rigorous condition for the onset of an unstable deformation in any inhomogeneous atomic system. Furthermore, the method can be applied to any type of potential field, which means that ab initio evaluations of the mechanical instability of inhomogeneous structure under non-uniform deformation will be possible. The validity of the method is clarified by the application to tension of a cracked body. The onsets of unstable deformations and their deformation modes are precisely evaluated by the method.

  Info
Periodical
Edited by
Jaroslav Pokluda
Pages
127-130
DOI
10.4028/www.scientific.net/MSF.482.127
Citation
Y. Umeno, T. Kitamura, "Criterion of Mechanical Instability in Inhomogeneous Atomic System", Materials Science Forum, Vol. 482, pp. 127-130, 2005
Online since
April 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Yi Zong Dang, Lu Wang, Qun Bo Fan
Chapter 2: Frontiers of Materials Science and Engineering
Abstract:The deformation micromechanism of Zr50Cu50 bulk metallic glasses under compress loading is studied by means of molecular dynamics. The...
723
Authors: M. Ponga, Ignasio Romero, M. Ortiz, M.P. Ariza
Abstract:Tensile failure of metals often occurs through void nucleation, growth and coalescence. This work is concerned with the study of plastic...
387
Authors: Vladimir I. Andreev
Chapter 4: Structural Engineering, Dynamics and Applied Mechanics, Building Materials and Building Management
Abstract:The article deals with the numerical-analytical method of solving problems in the theory of elasticity of inhomogeneous bodies in terms of...
593