Paper Title:
Dip-Test Internal Stress and the Composite Model of Creep Deformation
  Abstract

The composite model of plastic deformation is regarded as a realistic approximation of creep behaviour at elevated temperatures in a well-developed substructure consisting of dislocationdense subgrain boundaries (hard regions) and subgrain interiors (soft regions) with relatively low dislocation density. In the present contribution, the model is applied for an estimation of internal stresses that are experimentally measured by the dip-test technique. Two situations are considered within the model: (i) the density of moving dislocations is the same in both hard and soft regions and (ii) the density of moving dislocations is proportional to the local density in the respective region. The model enables to express the internal stress in terms of microstructural variables found by independent microscopic observations. It is shown that the magnitude of volume fraction of hard and soft region in the composite model has only a small effect on the value of internal stress.

  Info
Periodical
Edited by
Jaroslav Pokluda
Pages
291-294
DOI
10.4028/www.scientific.net/MSF.482.291
Citation
F. Dobeš, A. Orlová, "Dip-Test Internal Stress and the Composite Model of Creep Deformation", Materials Science Forum, Vol. 482, pp. 291-294, 2005
Online since
April 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Marc Seefeldt, Paul van Houtte
Abstract:An attempt to model the nucleation of fragment boundaries during cold plastic deformation of f.c.c. metals is presented. The paper focuses...
945
Authors: Igor V. Alexandrov, Roza G. Chembarisova
Abstract:The paper has viewed the manifestation of the paradox of severe plastic deformation (SPD), caused by the occurrence of preexisting...
231
Authors: Jin Kyung Kim, Yuri Estrin, Hossein Beladi, Sung Kyu Kim, Kwang Geun Chin, Bruno C. De Cooman
Abstract:High Mn steels demonstrate an exceptional combination of high strength and ductility due to their high work hardening rate during...
270
Authors: Xiao Chun Ma, Ji Hui Yin
Abstract:The thermal effect has pronounced influence on deformation behavior of materials at nanoscale due to small length scale. In current paper,...
155
Authors: Su Gui Tian, Ben Jiang Qian, Fu Shun Liang, An An Li, Xing Fu Yu
Abstract:By the measurement of creep curves and microstructure observation, an investigation has been made into the creep behaviors and microstructure...
276