Paper Title:
Effect of Interfaces on Fiber Fracture in Mg and MgLi Matrix Composites
  Abstract

Fibers fracture in tensile strained Mg and MgLi matrix composites strengthened with ~10% vol. short δ-Al2O3 fibers (Saffil) is investigated by „in-situ“ scanning electron microscopy and ex-situ“ determination of the length of fibers chemically recovered from tensile failed composites. Little interfacial reaction in Mg matrix composite results in poor interfacial bond so that composite failure proceeds via fiber pull-out with negligible fiber fragmentation. On the other hand, extensive fiber/matrix reaction in MgLi matrix composites promotes formation of strong interfaces which are linked with multiple fiber cross-breakage during tensile straining. These results are consistent with experimental tensile strengths of related composites.

  Info
Periodical
Edited by
Jaroslav Pokluda
Pages
355-358
DOI
10.4028/www.scientific.net/MSF.482.355
Citation
S. Kúdela, H. Wendrock, L. Ptáček, S. Menzel, K. Wetzig, "Effect of Interfaces on Fiber Fracture in Mg and MgLi Matrix Composites", Materials Science Forum, Vol. 482, pp. 355-358, 2005
Online since
April 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hyo Jin Kim, Do Won Seo, Jae Kyoo Lim, Toru Fujii
417
Authors: Joon Hyun Lee, Jeong Guk Kim
Abstract:The fracture behavior of Nicalon fiber reinforced calcium aluminosilicate (CAS) glass-ceramic matrix composites (Nicalon/CAS) was...
825
Authors: Wan Chang Sun, He Jun Li, Qian Gang Fu, Shou Yang Zhang
Abstract:PAN-carbon fibers were pretreated using three methods. 2D-C/C composites were fabricated by a rapid chemical liquid-vaporized infiltration...
482
Authors: Zhu Rui, Yu Tao Zhao, Song Li Zhang, Zhi Hong Jia
Chapter 1: Non-Ferrous Metal Material
Abstract:Abstract:Aluminum matrx composites reinforced by in situ ZrB2 particles are fabricated from A356-AlB-K2ZrF6 system via in-situ melt reaction...
122
Authors: Ying Cao, Li Pan
Chapter 2: Materials Science
Abstract:In the present investigation, resin transfer molding has been used to produce high quality carbon fiber epoxy composites and...
753