Paper Title:
Growth of 3C-(Si1-xC1-y)Gex+y Layers on 4H-SiC by Molecular Beam Epitaxy
  Abstract

In the present work cubic 3C-(Si1-xC1-y)Gex+y solid solutions were grown at different^temperatures by molecular beam epitaxy on on-axis 4H-SiC (0001) substrates. Two different growth methods are compared in order to explore the optimal growth conditions for the incorporation of Ge into the SiC lattice during the low temperature epitaxy. For this reason simultaneous growth and migration enhanced epitaxy were used. The chemical composition of the grown layers were analyzed by energy dispersive x-ray methods during transmission electron microscopy investigations. It was found that the migration enhanced epitaxy is a more suitable technique for the formation of high quality (Si1-xC1-y)Gex+y solid solutions. Additionally, polytypes transition from 4H-SiC to 3C-SiC occurs during the growth independent of the applied growth technique.

  Info
Periodical
Materials Science Forum (Volumes 483-485)
Edited by
Roberta Nipoti, Antonella Poggi and Andrea Scorzoni
Pages
173-176
DOI
10.4028/www.scientific.net/MSF.483-485.173
Citation
P. Weih, H. Romanus, T. Stauden, L. Spieß, O. Ambacher, J. Pezoldt, "Growth of 3C-(Si1-xC1-y)Gex+y Layers on 4H-SiC by Molecular Beam Epitaxy", Materials Science Forum, Vols. 483-485, pp. 173-176, 2005
Online since
May 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Kazutoshi Kojima, Hajime Okumura, Satoshi Kuroda, Kazuo Arai, Akihiko Ohi, Hiroyuki Akinaga
Abstract:Homoepitaxial growth was carried out on 4H-SiC on-axis substrate by horizontal hot wall chemical vapor deposition. By using carbon face...
93
Authors: Elena Tschumak, Katja Tonisch, Jörg Pezoldt, Donat J. As
Abstract:Cubic gallium nitride epitaxial layers grown on differently carbonized silicon substrates were studied by high resolution X-ray diffraction....
943
Authors: Jörg Pezoldt, Thomas Stauden, Florentina Niebelschütz, Mohamad Adnan Alsioufy, Richard Nader, Pierre M. Masri
Abstract:Germanium modified silicon surfaces in combination with two step epitaxial growth technique consisting in conversion of the Si(100) substrate...
159
Authors: Ameer Al-Temimy, Christian Riedl, Ulrich Starke
Abstract:By carbon evaporation under ultrahigh vacuum (UHV) conditions, epitaxial graphene can be grown on SiC(0001) at significantly lower...
593