Paper Title:
Plasma-Sprayed Wollastonite Coatings for Biomedical Application
  Abstract

A new bioceramic coating based on wollastonite was prepared by plasma spraying. The coatings exhibited good mechanical properties. The bond strength of the coating on substrate was about 40 MPa, which is higher than that of HA coatings used in orthopedics and dentistry. The bioactivity of wollastonite coatings was evaluated in vitro and in vivo. After immersed in simulated body fluid, a bone-like apatite layer was formed on the surface of wollastonite coatings. Osteoblast could survive and proliferate on the surface of coatings. After implanted in dog’s cortical bone, histological observation demonstrated that bone tissue could extend and grow along the surface of wollastonite coatings. The coating bonded directly to bone without any fibrous tissue, indicating good biocompatibility and bone conductivity. The wollastonite coatings also showed good bone inductivity property, inducing new-bone formation on their surface after implanted in marrow. The results obtained indicated that the plasma-sprayed wollastonite coatings possessed good mechanical properties and excellent bioactivity in vitro and in vivo. It appears that a wollastonite coating may be suitable for the repair and replacement of living bone, especially for load-bearing situations.

  Info
Periodical
Materials Science Forum (Volumes 486-487)
Edited by
Hyung Sun Kim, Sang-Yeop Park, Bo Young Hur and Soo Wohn Lee
Pages
201-204
DOI
10.4028/www.scientific.net/MSF.486-487.201
Citation
W. C. Xue, X. Y. Liu, X. B. Zheng, C. X. Ding, "Plasma-Sprayed Wollastonite Coatings for Biomedical Application", Materials Science Forum, Vols. 486-487, pp. 201-204, 2005
Online since
June 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Wei Chang Xue, Chuan Xian Ding, Cong Cao, Yuqi Dong
Abstract:A new bioceramic coating based on diopside was prepared by plasma spraying. The surface and cross-section microstructure of the coating were...
319
Authors: Si Yu Ni, Jiang Chang, Kai Li Lin, Wan Yin Zhai
Abstract:In this study, CaSiO3 (CS)/Ca3(PO4)2 (TCP) composites with 50% CS and 50% TCP sintered at different temperatures (1100oC, 1200oC and 1300oC)...
451
Authors: Hai Long Yang, Shouichi Somegawa, Ying Jie Yang, Zhi Chen Luo
617
Authors: Li Ping Wang, Bang Cheng Yang, Ji Yong Chen, Xing Dong Zhang
Abstract:The bioactivities of titanium oxide film on titanium surface received from different chemical treatment methods were studied in SBF in vitro...
545
Authors: Min Wang
Abstract:Metallic biomaterials such as stainless steel and Co-based alloys are corrosion resistant and possess excellent mechanical properties and...
285