Paper Title:
Residual Stress Relaxation and Cyclic Deformation Behavior of Deep Rolled AlMg4.5Mn (AA5083) at Elevated Temperatures
  Abstract

The cyclic deformation behavior of deep rolled and polished aluminium wrought alloy AlMg4,5Mn in the temperature range 20-300°C has been investigated. Results of quasistatic tension and compression tests of untreated specimens in the temperature range 20-300°C are presented. To characterize the fatigue behavior for stress-controlled tests as a function of test temperature, s-n curves, cyclic deformations curves and mean strains as a function of number of cycles are given. The residual stress- and work hardening states near the surface of deep rolled aluminium alloy AlMg4.5Mn before and after fatigue tests were investigated by X-ray diffraction methods. The investigated AlMn4.5Mn aluminium alloy shows cyclic hardening until fracture at all stress amplitudes in stress-controlled fatigue tests at 25-150°C. With increasing temperature the deformation behavior shifts from cyclic hardening to cyclic softening. Below a certain stress amplitude at a given temperature deep rolling led to a reduction of the plastic strain amplitude as compared to the untreated state through cyclically stable near-surface work hardening as indicated by stable FWHM-values. This reduction in plastic strain amplitude is associated with enhanced fatigue lives. The effectiveness of deep rolling is governed by the cyclic and thermal stability of nearsurface work hardening rather than macroscopic compressive residual stresses. Since nearsurface work hardening is known to retard crack initiation, deep rolling is also effective in temperature- and stress ranges where macroscopic compressive residual stresses have relaxed almost completely, but where near-surface work hardening prevails. Above certain stress amplitudes and temperatures, deep rolling has no beneficial effect on the fatigue behavior of AlMg4.5Mn. This is a consequence of instable near-surface microstructures, especially instable near-surface work hardening.

  Info
Periodical
Materials Science Forum (Volumes 490-491)
Edited by
Sabine Denis, Takao Hanabusa, Bob Baoping He, Eric Mittemeijer, JunMa Nan, Ismail Cevdet Noyan, Berthold Scholtes, Keisuke Tanaka, KeWei Xu
Pages
436-441
DOI
10.4028/www.scientific.net/MSF.490-491.436
Citation
P. Juijerm, I. Altenberger, U. Noster, B. Scholtes, "Residual Stress Relaxation and Cyclic Deformation Behavior of Deep Rolled AlMg4.5Mn (AA5083) at Elevated Temperatures", Materials Science Forum, Vols. 490-491, pp. 436-441, 2005
Online since
July 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jaroslav Polák, Martin Petrenec
Abstract:The fatigue properties of ferritic-pearlitic-bainitic steel using specimens produced from massive forging were measured in stress controlled...
577
Authors: Shu Ying Yin, Li Jia Chen, Xin Wang
Building Materials
Abstract:In order to identify the influence of solid solution, aging and solid solution plus aging treatments on the low-cycle fatigue behavior of the...
883
Authors: Yu Li Gu, Yu Huai He, Chang Kui Liu, Chun Hu Tao
Chapter 2: Applications of Materials in Manufacturing Technologies, Materials Science and Engineering
Abstract:Low cycle fatigue failure tests of the powder metallurgical nickel based superalloy FGH96 at 550°C and 720°C were carried out under total...
418
Authors: Stefan Heinz, Dietmar Eifler
Chapter 3: Advanced Materials on Very High Cycle Fatigue
Abstract:High frequency fatigue tests were carried out with a 20 kHz ultrasonic testing facility to investigate the cyclic deformation behavior of...
71
Authors: Ivo Šulák, Karel Obrtlík, Ladislav Čelko
Abstract:The present work is focused on the study of microstructure and low cycle fatigue behavior of the first generation nickel-base superalloy IN...
86