Paper Title:
Biphasic Calcium Phosphate/Poly-(DL-Lactide-Co-Glycolide) Biocomposite as Filler and Blocks for Reparation of Bone Tissue
  Abstract

Composite biomaterials, like calciumphosphate/bioresorbable polymer, offer excellent potential for reconstruction and reparation of bone tissue defects induced by different sources. In this paper synthesis of calciumphosphate/poly-DL-lactide-co-glycolide (BCP/DLPLG) composite biomaterial formed as filler and blocks was studied. BCP/DLPLG composite biomaterial was produced in the form of spherical granules of BCP covered by a DLPLG layer, average diameter of 150-250 µm. By cold and hot pressing of granules at up to 10000 kg/cm2, blocks with fine distribution of phases and porosity up to 3% were obtained. Characterization was performed by wide-angle X-ray structural analysis (WAXS), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), infrared spectroscopy (IR), and mechanical properties by defining the compressive strength. In vitro citotoxicity research was carried out on cellular cultures of fibroblasts of human (MRC5) and mouse (L929). In vivo research was performed in two steps. Reparatory ability of BCP/DLPLG in mice was examined in the first step, and then bone tissue reconstruction possibilities on 10 patients in the next step. In vitro tests showed very good fibroblast adhesion and non-citotoxicity of the composite. A material is considered non-cytotoxic if the cell survival is above 50 %, and in our case it was 90%. In vivo research on mice indicated high level of reparatory ability of this composite with formation of new bone and vascular tissue six weeks after reparation. Application of this composite for healing infrabone defects of patients showed a high level of osseous regeneration.

  Info
Periodical
Edited by
Dragan P. Uskokovic, Slobodan K. Milonjic, Djan I. Rakovic
Pages
519-524
DOI
10.4028/www.scientific.net/MSF.494.519
Citation
N. Ignjatović, P. Ninkov, Z. Ajduković, V. Konstantinović, D. P. Uskokovic, "Biphasic Calcium Phosphate/Poly-(DL-Lactide-Co-Glycolide) Biocomposite as Filler and Blocks for Reparation of Bone Tissue ", Materials Science Forum, Vol. 494, pp. 519-524, 2005
Online since
September 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chak Yin Tang, N. Ignjatović, Dragan P. Uskokovic, P.S. Uskoković, K.C. Chan, S.C.L. Lo, Tai Chiu Lee
Abstract:This study descripts processing of biphasic calcium-phosphate (BCP) and poly-L-lactide (PLLA) biocomposite implant material. The composite...
273
Authors: M. Radić, N. Ignjatović, Zoran Nedić, M. Mitrić, Dejan Miličević, Dragan P. Uskokovic
Abstract:In this paper we report the results on synthesis of a composite biomaterial based on biphasic calcium phosphate (BCP) and...
537
Authors: Gaelle Jouan, Eric Goyenvalle, Eric Aguado, Ronan Cognet, Françoise Moreau, Xavier Bourges, G. Daculsi
Abstract:Resorbable osteosynthesis based on PLLA and derivatives will be associated to bone substitute for bone reconstruction. We have performed...
411
Authors: Oliver Malard, Helene Gautier, G. Daculsi
Abstract:Microporosity and granules size are important parameters for the development of suspension, composites and injectable bone substitutes. In...
1233
Authors: Ho Yeon Song, Young Hee Kim, Jyoti M. Anirban, In Seon Byun, Kyung A Kwak, Byong Taek Lee
Abstract:Calcium phosphate ceramics such as hydroxy apatite (HA), β-tricalcium phosphate (β-TCP) and bicalcium phosphate (BCP) have been used as a...
2065