Paper Title:
A Dislocation Density Based Constitutive Model for Crystal Plasticity FEM
  Abstract

Crystallographic slip, i.e. movement of dislocations on distinct slip planes, is the main source of plastic deformation of most metals. Therefore, it was an obvious idea to build a constitutive model based on dislocation densities as internal state variables in the crystal plasticity. In this paper the dislocation model recently proposed by Ma and Roters (Ma A. and Roters F., Acta Materialia, 52, 3603-3612, 2004) has been extended to a nonlocal model through separating the statistically stored dislocation and geometrically necessary dislocation densities. A nonlocal integration algorithm is proposed, which can be more easily used in conjunction with commercial software such as MARC and ABAQUS than the model proposed in the work of Evers(Evers L.P., Brekelmans W.A.M., Geers M.G.D., Journal of the Mechanics and Physics of Solids, 52, 2379-2401, 2004).

  Info
Periodical
Materials Science Forum (Volumes 495-497)
Edited by
Paul Van Houtte and Leo Kestens
Pages
1007-1012
DOI
10.4028/www.scientific.net/MSF.495-497.1007
Citation
A. Ma, F. Roters, D. Raabe, "A Dislocation Density Based Constitutive Model for Crystal Plasticity FEM", Materials Science Forum, Vols. 495-497, pp. 1007-1012, 2005
Online since
September 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Guo Chen, Zi Qiao Zheng, Dong Feng Han
Abstract:The hot deformation behaviors and microstructure in Al-Cu-Li alloy containing small amount of Ag and Mg were investigated by transmission...
1925
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: M. Ponga, Ignasio Romero, M. Ortiz, M.P. Ariza
Abstract:Tensile failure of metals often occurs through void nucleation, growth and coalescence. This work is concerned with the study of plastic...
387
Authors: Wojciech Wajda, Henryk Paul
Abstract:The paper describes the mechanism of deformation at 77 K of pure aluminum bicrystals of different grain orientations. The following...
108
Authors: Xu Dong Zhou, Xiang Ru Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The researches of non-oriented silicon steel are mainly focused on the effect of main processing parameters on the microstructure and...
1468