Paper Title:
Quantitative Texture Analysis with the HIPPO TOF Diffractometer
  Abstract

One of the design goals of the neutron time-of-flight (TOF) diffractometer HIPPO (HIgh Pressure - Preferred Orientation) at LANSCE (Los Alamos Neutron Science Center) was efficient quantitative texture analysis. In this paper, the effects of the HIPPO detector geometry and layout on texture analysis, particularly the shape and dimensions of the detector panels, are investigated. An aluminum sample with a strong and asymmetric texture was used to determine the methodological limitations of various methods of quantitative texture analysis. Several algorithms for extracting the orientation distribution function (ODF) from the TOF-spectra are compared: discrete orientations at arbitrary positions, harmonic method in Rietveld codes (MAUD and GSAS) and discrete methods in MAUD. All methods provide a similar representation of the main texture component, but discrete methods have a fundamental advantage over harmonic methods in characterizing regions of the ODF with low orientation densities. For HIPPO data of the present sample, harmonic expansions beyond lmax= 12 introduce subsidiary maxima and minima, which are consistently identified as artifacts. The results of our analysis establishes HIPPO as an efficient instrument to quantitatively determine preferred orientations in relatively short measuring times, if the texture features are not exceedingly sharp (full-width at half-maximum (FWHM) in the ODF > 20-30°).

  Info
Periodical
Materials Science Forum (Volumes 495-497)
Edited by
Paul Van Houtte and Leo Kestens
Pages
113-118
DOI
10.4028/www.scientific.net/MSF.495-497.113
Citation
J. Pehl, S. Matthies, H.R. Wenk, L. Lutterotti, S. C. Vogel, "Quantitative Texture Analysis with the HIPPO TOF Diffractometer ", Materials Science Forum, Vols. 495-497, pp. 113-118, 2005
Online since
September 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: D.I. Nikolayev, T.A. Lychagina, A.V. Nikishin, V.V. Yudin
Abstract:Method to process neutron time of flight spectra for extracting texture information is suggested. Local peak fit is used to gain integral...
77