Paper Title:
Microstructure and Texture Control of Al-Mg Alloy Sheets by Differential Speed Rolling
  Abstract

Large shear deformation was successfully introduced in 5182 aluminum alloy sheets by 2-pass differential speed warm rolling under a high friction condition. The roll speed ratio was varied from 1.0 to 2.0. When the roll speed ratio was smaller than 1.4, shear strain increased near the surface, but the strain decreased to zero at the mid-thickness. At a roll speed ratio larger than 1.4, shear strain was introduced even at the mid-thickness, and it increased near the surface. Thus the shear strain increased with the roll speed ratio. After 2-pass differential speed rolling, a large shear strain prevailed throughout the thickness. The rolling direction of the second pass was so selected that the direction of shear deformation introduced in the second pass was similar to (unidirectional shear rolling) or opposite (reverse shear rolling) that in the first pass. A shear texture with main components of {111}<110>, {112}<110> and {001}<110> prevailed throughout the thickness, and conventional rolling textures such as {112}<111> or {123}<634> orientation were not detected in any part of thickness. The rolling direction of the second pass had little effect on the deformation texture. After recrystallization annealing, the shear texture components were retained. The intensity of the shear texture components after recrystallization was almost similar to the deformation texture. The r-value of the annealed sheet was slightly increased and the planar anisotropy of the r-value was decreased by differential speed rolling. Differential speed rolling, by which shear deformation can be introduced throughout the thickness, was thus shown to be a promising process for improving the physical and mechanical properties of rolled and annealed aluminum alloy sheets by texture control.

  Info
Periodical
Materials Science Forum (Volumes 495-497)
Edited by
Paul Van Houtte and Leo Kestens
Pages
597-602
DOI
10.4028/www.scientific.net/MSF.495-497.597
Citation
T. Sakai, K. Yoneda, S. Osugi, "Microstructure and Texture Control of Al-Mg Alloy Sheets by Differential Speed Rolling", Materials Science Forum, Vols. 495-497, pp. 597-602, 2005
Online since
September 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Pablo Rodriguez-Calvillo, Yvan Houbaert
Abstract:High silicon steel is used for electrical applications because its electrical resistivity is increased and the magnetostriction is reduced....
15
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: Wojciech Wajda, Henryk Paul
Abstract:The paper describes the mechanism of deformation at 77 K of pure aluminum bicrystals of different grain orientations. The following...
108
Authors: Wei Shin Lin, Bean Yin Lee, Yuan Chuan Hsu, Jui Chang Lin
Chapter 3: Materials Forming, Machining and Joining
Abstract:In multi-wire flat rolling process, the error of the rolled wires in thickness was due to the roller deflection and the spring back of the...
1251
Authors: Marcin Knapiński, Bartosz Koczurkiewicz, Henryk Dyja, Anna Kawałek, Marcin Kwapisz
VII. Metallic Alloys
Abstract:The requirement for curde oil and natural gas is still increasing. It was observed a growing of interested in the exploration and...
518