Paper Title:
Grain Refinement by High Temperature Plane-Strain Compression of Fe-2%Si Steel
  Abstract

An Fe-2%Si alloy, which was designed for electromagnetic applications was submitted to a series of plane strain compression (PSC) tests with reductions of 25, 35 and 75% at temperatures varying from 800 to 1,100°C and at a constant engineering strain rate corresponding to a constant cross velocity of 20 mm/s. The initial structure of the material displayed nearly equi-axed grains with an average size of 80 μm. The as-received texture was characterised by a nearly random cube fibre (<100>//ND) with a relatively weak maximum on the rotated cube component ({001}<110>). After deformation the samples were water quenched in order to avoid post-process static recrystallization events. The microstructures were analysed by orientation imaging microscopy (OIM) revealing that the zone of PSC was restricted to the central layers of the sample but minimally covering 50% of the sample thickness. After deformation at 800°C the conventional lamellar deformation structures were observed on the sections perpendicular to the transverse direction of PSC. At higher deformation temperatures the structure was of a bimodal nature consisting of lamellar deformation bands and equi-axed small grains. The volume fraction of these small equi-axed grains increased from 19.9% after 75%reduction at 800°C to 67.8% after 75% reduction at 1.100°C. After 75% reduction the equi-axed grains exhibited an average size of 10 μm which represents a strong grain refinement with respect to the initial size of 80 μm prior to PSC. Ferrite Silicon steels undergo extensive dynamic recovery during hot working. Dynamic recrystallization (DRX), though, has not yet been reported for these alloys although the present data suggest that a DRX mechanism might be responsible for the remarkable grain refinement after relatively low amounts of strain applied at high temperatures.

  Info
Periodical
Materials Science Forum (Volumes 503-504)
Edited by
Zenji Horita
Pages
977-982
DOI
10.4028/www.scientific.net/MSF.503-504.977
Citation
P. Rodriguez-Calvillo, A. C. C. Reis, L. Kestens, Y. Houbaert, "Grain Refinement by High Temperature Plane-Strain Compression of Fe-2%Si Steel", Materials Science Forum, Vols. 503-504, pp. 977-982, 2006
Online since
January 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Pablo Rodriguez-Calvillo, Yvan Houbaert
Abstract:High silicon steel is used for electrical applications because its electrical resistivity is increased and the magnetostriction is reduced....
15
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: Marcin Knapiński, Bartosz Koczurkiewicz, Henryk Dyja, Anna Kawałek, Marcin Kwapisz
VII. Metallic Alloys
Abstract:The requirement for curde oil and natural gas is still increasing. It was observed a growing of interested in the exploration and...
518
Authors: Henryk Paul, Magdalena M. Miszczyk
Chapter 5: Micro- and Nano-Forming
Abstract:The microstructure and texture evolution in commercially pure aluminium (AA1050 alloy) and copper have been characterized after change in...
240