Paper Title:
The Transformation of Co-Rich Alloys Produced by Mechanical Alloying
  Abstract

Elemental powder mixtures of Co and Ti were subjected to high-energy ball milling in order to produce mechanically alloyed powders with nominal compositions Co64Ti36, Co67Ti33, Co70Ti30, Co73Ti27, Co76Ti24 and Co85Ti15. The mechanically alloyed powders were treated during 30 minutes in inert atmosphere at temperatures in the range 300 – 700 °C. Both the as-milled powders as well as those subjected to heat treatments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectrometry and differential thermal analysis. As-milled products consist mostly of agglomerated powders with a size between 10 and 80 µm which give an amorphous-like diffraction pattern, except for the Co85Ti15 sample whose pattern presents the characteristic peaks of the Co3Ti intermetallic phase. The transformation of the asmilled powders occurs at temperatures in the range of about 530 – 670 °C with clearly observed exothermic events. The Co3Ti phase is found in all heat treated samples, together with fcc-Co (in Co76Ti24 and Co85Ti15) or the hexagonal Co2Ti intermetallic phase (in Co64Ti36, Co67Ti33 and Co70Ti30); the Co73Ti27 sample was essentially single-phase Co3Ti after heating to 700 °C. Our results suggest the occurrence of crystallization of an amorphous phase in two overlapping stages during heating of the mechanically alloyed powders.

  Info
Periodical
Edited by
H. Balmori-Ramírez, M. Brito, J.G. Cabañas-Moreno, H.A. Calderón-Benavides, K. Ishizaki and A. Salinas-Rodríguez
Pages
135-140
DOI
10.4028/www.scientific.net/MSF.509.135
Citation
F. Cruz-Gandarilla, R. Gayosso-Armenta, J. G. Cabañas-Moreno, H. Balmori-Ramírez, "The Transformation of Co-Rich Alloys Produced by Mechanical Alloying", Materials Science Forum, Vol. 509, pp. 135-140, 2006
Online since
March 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Gema González, A. Sagarzazu, R. Villalba, J. Ochoa
219
Authors: Song Zhe Jin, Bao Yan Liang, Jing Feng Li, Li Li
Abstract:In the present study, we fabricated high purity and electrically machinable Ti3SiC2 ceramics by mechanical alloying and subsequent spark...
1065
Authors: Chih Feng Hsu, Pee Yew Lee
Abstract:The preparation of Ti50Cu28Ni15Sn7 metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and...
865
Authors: Xiao Jing Liu, Sang Dae Kang, Zhe Zhu Xu, In Shup Ahn
Abstract:In this study, the FeS2 fine compound powders for active material were made by mechanical alloying using the Spex mixer mill. As the total...
77
Authors: Tong Xin, Zhou Hong, Liu Min
Laser Processing Technology
Abstract:The past studies indicated that thermal fatigue resistance of cast irons could be improved by partly laser melting treatment. However the...
1405