Paper Title:
Microstructural Evolution during Simple Heavy Warm Deformation of a Low-Carbon Steel
  Abstract

We examined the microstructure development in low carbon steel (0.15% C) during heavy warm deformation (HWD) using field emission scanning electron microscopy (FESEM) and electron back-scattering diffraction (EBSD). Plane strain compression tests have been conducted in the temperature range of 773-923 K at strain rates of 0.01 s-1 and 1 s-1 with the specimens deformed to 25% of their original thickness. We summarize the strain rate and temperature into the Zener-Hollomon parameter and investigate its variation with plastic strain on the basis of the evolved microstructures and grain boundary character with a view to understanding the critical conditions for forming ultrafine grains and classifying them. Once established, these compressive strain-Z parameter plots simplify the selection of processing parameters (such as strain, strain rate, and temperature), towards achieving tailor-made microstructures in industrial components.

  Info
Periodical
Edited by
Yukichi Umakoshi and Shinji Fujimoto
Pages
49-54
DOI
10.4028/www.scientific.net/MSF.512.49
Citation
S.V.S. Narayana Murty, S. Torizuka, K. Nagai, "Microstructural Evolution during Simple Heavy Warm Deformation of a Low-Carbon Steel", Materials Science Forum, Vol. 512, pp. 49-54, 2006
Online since
April 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: Zhi Guo Chen, Zi Qiao Zheng, Dong Feng Han
Abstract:The hot deformation behaviors and microstructure in Al-Cu-Li alloy containing small amount of Ag and Mg were investigated by transmission...
1925
Authors: Atef S. Hamada, L. Pentti Karjalainen, Mahesh C. Somani, R.M. Ramadan
Abstract:The hot deformation behaviour of two high-Mn (23-24 wt-%) TWIP steels containing 6 and 8 wt-% Al with the fully austenitic and duplex...
217
Authors: Pablo Rodriguez-Calvillo, Yvan Houbaert
Abstract:High silicon steel is used for electrical applications because its electrical resistivity is increased and the magnetostriction is reduced....
15
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306