Paper Title:
Evolutional Friction Law in the Numerical Simulation of the Deep Drawing of a Rail
  Abstract

One of the most relevant technological parameters for the accurate numerical simulation of the deep drawing process is friction, since the contact between the blank sheet and tools develops friction forces that act as supplementary boundary conditions that determine the final part shape. Most applications reported in literature are still restricted to Coulomb’s law with a constant friction coefficient over the entire process. Although it is consensual that state conditions of contact surfaces and consequently the friction behaviour are influenced by a large number of parameters, there is no agreement about a wide-ranging law to accurately describe the friction evolution. One possibility is to use phenomenological laws that accurately fit experimental data. A Voce type law is used in this work to describe the evolution of the friction coefficient over the entire process as function of the contact pressure. This type of law guarantees a good correlation with experimental data and also numerical stability. The Voce type law was implemented in the static implicit code DD3IMP. The analysis of the relevance of considering the evolutional friction law in the numerical simulation is performed for a U-rail. This shape was selected for this study due to the simple deformation mechanisms that are involved, but also because it is a rail specially conceived to emphasize 2-D springback defects. The blank sheet material selected is a 6016-T4 aluminium alloy. The plastic behaviour is modelled using the 1948 Hill’s criterion with isotropic and kinematic hardening. The numerical results obtained considering the evolutional friction law are compared with two other results obtained with: (i) a constant friction value of 0.10, normally used for this material in industrial practice and (ii) three constant friction coefficients for each contact zone (flat, die radius and punch radius).

  Info
Periodical
Materials Science Forum (Volumes 514-516)
Edited by
Paula Maria Vilarinho
Pages
1443-1447
DOI
10.4028/www.scientific.net/MSF.514-516.1443
Citation
M. C. Oliveira, J. L. Alves, L. F. Menezes, "Evolutional Friction Law in the Numerical Simulation of the Deep Drawing of a Rail", Materials Science Forum, Vols. 514-516, pp. 1443-1447, 2006
Online since
May 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: B.J. Xiao, Cheng Yong Wang, Ying Ning Hu, Yue Xian Song
Abstract:A two-dimensional orthogonal thermal-mechanical finite element model by Deform2D finite element analysis software is established in the...
590
Authors: Hong Rui Ao, Deng Pan, Hong Yuan Jiang
Thin Films
Abstract:The contact at head/disk interface in hard disk drives subject to an external shock has been studied using the finite element method. A rigid...
2339
Authors: Chang Jiang Wang, Diane J Mynors, Tarsem Sihra
Chapter 15: Materials Processing Technology
Abstract:Presented here is the simulation of uniaxial stretch forming using two punches in a sheet metal forming operation. In the finite element...
2002
Authors: Xin Wu Ma, Guo Qun Zhao, Wen Juan Li
Chapter 5: Materials Processing and Chemical Technologies
Abstract:A new method for determination of friction coefficient in sheet metal forming of Mg alloy AZ31B is presented in this paper. The method is...
430
Authors: Li Li Huang, Xiao Yang Lu, Xiang Wei Zhang
Chapter 2: Mechanics Engineering, Dynamics and Systems, Manufacturing Design Applications
Abstract:The numerical simulation of the ironing process of deep cup shaped part was conducted by finite element software Deform 3D. The influences of...
191