Paper Title:
Physical Cutting Model of Polyamide Composites (PA66 GF30)
  Abstract

Polymeric matrix composite materials presents advantages in a great number of applications due to their high specific strength and stiffness, wear resistance, dimensional stability, low weight and directional properties. As result of these properties and potentials applications exists a strong need to understand the manufacturing processes, particularly the machining process of these composite materials. This paper presents an investigation above the modelization of the cut, turning of small workpieces, on two materials: a polymer PA 6 (Polyamide) and a composite PA 66-GF30 (reinforced with 30% of glass fiber). The tests were carried out polycrystalline diamond tools (PCD). The objective of this experimental study is to evaluate the influence of the glass fiber reinforcement on the friction angle (ρ), shear angle (Φ), normal and shear stresses (σ, τ), chip deformation (ε) under the cutting parameters prefixed (cutting velocity and feed rate). The experimental model was compared with the theoretical model of Merchant.

  Info
Periodical
Materials Science Forum (Volumes 514-516)
Edited by
Paula Maria Vilarinho
Pages
643-647
DOI
10.4028/www.scientific.net/MSF.514-516.643
Citation
F. Mata, P. Reis, J. P. Davim, "Physical Cutting Model of Polyamide Composites (PA66 GF30)", Materials Science Forum, Vols. 514-516, pp. 643-647, 2006
Online since
May 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Han Ul Lee, Dong Woo Cho
Abstract:For effective rough milling, an optimized criterion is required to select the feedrate. In this study, a method to obtain the most...
43
Authors: Zi Rui Pang, Suo Xian Yuan, Wan Shan Wang, Chun Xia Zhu
Abstract:In this paper, we emphasize that residual stresses in a ground surface are primarily generated due to grinding zone temperature effect, and...
239
Authors: Xue Song Han
Abstract:Exit fracture, the main factor influencing the precision of workpiece, has already been extensively studied. In the case of nanometric...
1833
Authors: Jun Zhou, Jian Feng Li, Jie Sun
Abstract:In this paper, the micro-scale machining characteristics of a non-ferrous structural alloy, aluminum 7050-T7451 is investigated through a...
657
Authors: Atanu Das, Partha Pratim Saha, Santanu Das
Chapter 8: Material Processing Technology
Abstract:Shaping Burrs are produced at the edge of a workpiece when a cutter exits it. It causes difficulties in manufacturing and assembly stages....
1602