Paper Title:
Nonlinear Dynamics of Brewing Yeast Cell Growth in Alginate Micro-Beads
  Abstract

The nonlinear dynamics of brewing yeast cell growth in porous Ca-alginate matrices is considered experimentally and theoretically. The applications of alginate matrices include the reduction of internal mass transfer resistance, minimized cell leakage and growth restriction due to interactions between matrices and cell membranes comparatively to free cell culture conditions. The effects of micro-bead diameters in the range 0.3-2.0 mm on yeast cell growth were investigated. The stochastic mathematical model from the Langevin class is proposed for the interpretation of cell growth, affected by four micro-processes: micro-environmental quality changes due to nutrient diffusion into the micro-beads, cell leakage, repulsive interactions between boundary layers around the cells themselves, which contribute to the dynamics of cell growth as a negative, nonlinear feedback restriction and random kinetics effects. Such a model is used for the prediction of the optimal diameter of micro-beads, which ensures maximal final cell concentration. The results of cell growth in alginate matrices study have indicated an optimal diameter of 0.5-0.6 mm for micro-beads. Immobilized cells in these beads were not restricted significantly by mass transfer of nutrients and by cell leakage. The highest final cell concentration value indicated the largest feed-back restriction quantified by the constitutive parameter b.

  Info
Periodical
Edited by
Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic
Pages
519-524
DOI
10.4028/www.scientific.net/MSF.518.519
Citation
I. Pajić-Lijaković, V. Nedović, B. Bugarski, "Nonlinear Dynamics of Brewing Yeast Cell Growth in Alginate Micro-Beads ", Materials Science Forum, Vol. 518, pp. 519-524, 2006
Online since
July 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: B. Obradović, B. Bugarski, Z. Todosijević, V. Nedović, D. Bugarski, G. Vunjak-Novaković
Abstract:Alginate is one of the mostly used hydrogels for cell entrapment aimed for applications in food industry, environmental engineering, pharmacy...
531
Authors: Ming Fang Luo, Hui Zhou Liu
Abstract:Gram-negative bacterium, Pseudomonas delafieldii R-8 (CGMCC 0570) is capable of desulfurizing dibenzothiophene (DBT) and...
1171
Authors: Pei Rong Zhan, Wei Liu
Chapter 1: Environmental Chemistry, Biology and Technology
Abstract:The photosynthetic bacteria have been widely used in improving the water environment, especially for pollutant purification. A photosynthetic...
311