Paper Title:
Solidification Structure and Casting Defect in a High-Speed Twin-Roll Cast A6022 Aluminium Alloy with Various Fe Contents
  Abstract

Closed-loop recycling should be promoted for wrought aluminum alloy scraps including impurity iron in order to use natural resources effectively. Fabrication of the alloy strip using a high rate of cooling is a promising method for reducing the detrimental effects of impurity iron. In the present study, strips of A6022 aluminum alloy with various Fe contents of up to 1.5 mass% were fabricated by a vertical-type, high-speed, twin-roll caster. The caster used in the study was equipped with a pair of water-cooled, pure copper rolls, and a cooling slope upstream of the rolls. The strips exhibited a common microstructural feature. Columnar grains grew from both surfaces of the strip, and they were gradually replaced by equiaxed grains. In the mid-central region, a band of fine grains was observed. Such fine grains seemed to originate from the crystallized α-Al dendrites on the cooling slope or the roll surfaces. Internal cracks were observed in the A6022 alloy strip that was subjected to the highest cooling rate. The cracks were located between equiaxed grains and fine grains at the mid-central region. The cracks were reduced with increasing Fe content. No cracks were observed for the alloy strips with 1.0 mass% Fe or greater. It was found that both a slight reduction in the cooling rate and addition of Fe were effective for obtaining sound A6022 strips.

  Info
Periodical
Materials Science Forum (Volumes 519-521)
Edited by
W.J. Poole, M.A. Wells and D.J. Lloyd
Pages
1821-1826
DOI
10.4028/www.scientific.net/MSF.519-521.1821
Citation
K. Suzuki, S. Kumai, K. Tokuda, T. Miyazaki, A. Ishihara, Y. Nagata, R. Nakamura, "Solidification Structure and Casting Defect in a High-Speed Twin-Roll Cast A6022 Aluminium Alloy with Various Fe Contents", Materials Science Forum, Vols. 519-521, pp. 1821-1826, 2006
Online since
July 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Min Zhang, Qiang Wang, B.C. Li, X. Zhang
Abstract:Warm compression tests of AZ31 Mg alloy were carried out at five temperatures in 30°C intervals from 210°C to 330°C. The samples of...
1813
Authors: E.P. Masuku, Gonasagren Govender, L. Ivanchev, Heinrich Möller
Abstract:Rheocasting of alloys A206 and A201 was investigated in this study. Conical bars with different silver contents were produced using CSIR...
151
Authors: Guo Fa Mi, Cui Fen Dong, Chang Yun Li, Hai Yan Wang
Abstract:Cast, sub-rapidly solidified and rapidly solidified Al-5Fe alloy and Al-5Fe-3Y alloy were respectively prepared by vacuum melting, suction...
2462
Authors: Xiao Ping Luo, Lan Ting Xia, Ming Gang Zhang
Abstract:The effect of Cd and Sb addition on the microstructural and mechanical properties of as-cast AZ31 alloys was investigated and compared. The...
197
Authors: S.G. Shabestari, R. Gholizadeh
Chapter 2: Forming in Melt or Near Melt Condition
Abstract:Dense precipitation of various intermetallic compounds is a common feature in the microstructure of Al-Si piston alloys. In this...
289