Paper Title:
Preparation of Highly Oxidation-Resistant Surface by Molten Salt Electrodeposition
  Abstract

In order to prepare a highly oxidation-resistant surface for TiAl and SUS 304 stainless steel, the molten salt electrodeposition of Al or Y on these metals was carried out. The electrodeposition was conduced using a potentiostatic polarization method at constant potentials in an equimolar NaCl-KCl melt containing AlF3 or YF3 at 1023 K. After the Al electrodeposition, homogenous deposit layers were formed on the TiAl and the stainless steel. The deposited layer formed on the TiAl consisted of TiAl3. The deposited layer formed on the stainless steel consisted of some Fe aluminides. The TiAl and the stainless steel covered by the electrodeposited layers were far more resistant than the bare TiAl and stainless steel to high temperature oxidation. The Y electrodeposition on the stainless steel induced the deposition of Y particles on the stainless steel. The cyclic-oxidation resistance of the electrodeposited stainless steel was remarkably improved as compared to the untreated stainless steel.

  Info
Periodical
Materials Science Forum (Volumes 522-523)
Edited by
Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara
Pages
255-266
DOI
10.4028/www.scientific.net/MSF.522-523.255
Citation
M. Hara, M. Fukumoto, "Preparation of Highly Oxidation-Resistant Surface by Molten Salt Electrodeposition", Materials Science Forum, Vols. 522-523, pp. 255-266, 2006
Online since
August 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Bum Rae Cho
Abstract:Indium tin oxide (ITO) used in many applications such as electronic and optical devices were deposited on the soda lime glass substrate by...
195
Authors: Kun Xue, Li Sha Niu, Hui Ji Shi, Ji Wen Liu
Abstract:Sputter deposited SiC films with and without annealing were characterized using X-ray photoelectron spectroscopy (XPS). A complex transition...
1871