Paper Title:
Exfoliation and Fracture Behavior of Oxide Films Formed on Titanium and Its Alloy in High Temperature Environments
  Abstract

It is very difficult to obtain mechanical properties of oxide films formed on a material in high temperature environments despite its importance of estimating material degradation caused by such as thermal stress. Corrosion/oxidation tests were conducted for pure titanium and titanium alloy in high temperature corrosive environments of wet air and water vapor with hydrogen chloride at temperatures from 673 K to 973 K to look into basic behavior of degradation and the growth of titanium oxide films. It was found that oxide films were usually formed on the specimen surface and the growth was accelerated by the corrosiveness of the environment. In order to examine mechanical properties and exfoliation of corrosion products or oxide films formed on titanium and its alloy, tests of single particle impact on the specimen surface with a glass bead were performed in high temperature corrosive environments. The piling-up surfaces around impact craters were formed and plastically strained. The oxide film formed on the metal surface was detached in a wide range of the circumference and fractured a little far from the rim of the crater. Then fracture and exfoliation stress of the oxide film were estimated by the calculation of impact energy and fractured and detached areas. It was found that both the fracture and exfoliation stress of the oxide films were different depending on the corrosive environment and chemical composition of titanium alloy.

  Info
Periodical
Materials Science Forum (Volumes 522-523)
Edited by
Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara
Pages
417-424
DOI
10.4028/www.scientific.net/MSF.522-523.417
Citation
Y. I. Oka, T. Yamabe, T. Tsumura, "Exfoliation and Fracture Behavior of Oxide Films Formed on Titanium and Its Alloy in High Temperature Environments", Materials Science Forum, Vols. 522-523, pp. 417-424, 2006
Online since
August 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: Zhentao Yu, Lian Zhou, Lijuan Luo, Maohong Fan, Yanyan Fu
Abstract:The effects of alloying elements such as Mo, Sn, Zr, Nb, deforming-rate, solid solution and aging treatment on mechanical property and...
595
Authors: N. R. Ha, Z. X. Yang, Kyu Hong Hwang, J. K. Lee
Abstract:Pure Titanium alloys are superiorities of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy...
177
Authors: Cui Li, Wei Qi, Kutsuna Muneharu
Abstract:A zircon coating was applied on the surface of Ti-6Al-4V alloy by plasma spray and its effect on the high temperature tensile properties of...
547
Authors: Hsi Hsin Chien, Kung Jeng Ma, Chien Hung Kuo
Chapter 3: Mechanical Engineering and Manufacturing
Abstract:Glass molding process provides a great potential for the production of precise glass optical components at low cost. The platinum-iridium...
533