Paper Title:
Investigation of the Mechanism and Growth Kinetics of Homoepitaxial 4H-SiC Growth Using CH3Cl Carbon Precursor
  Abstract

In this work, the mechanism of the epitaxial growth of 4H SiC using CH3Cl as the carbon source gas was investigated. The experiments were conducted with a H2 carrier gas flow rate reduced in comparison to the standard conditions used for device-quality, full-wafer C3H8 growth. Low-H2 conditions have been found favorable for investigating the differences between the two gas systems. A non-linear trend of the growth rate dependence on CH3Cl flow was observed. This dependence was quantitatively different for C3H8 growth, which serves as an indication of different kinetics of CH3Cl and C3H8 precursor decomposition, as well as differences in Si droplet formation and dissociation. The maximum growth rate that we were able to achieve was by a factor of two higher for the CH3Cl precursor than for the C3H8 precursor at the same temperature and flow conditions. The growth on lower off-axis angle substrates produced surface morphology degradation similar for both CH3Cl and C3H8 precursor systems.

  Info
Periodical
Materials Science Forum (Volumes 527-529)
Edited by
Robert P. Devaty, David J. Larkin and Stephen E. Saddow
Pages
171-174
DOI
10.4028/www.scientific.net/MSF.527-529.171
Citation
H. D. Lin, J. L. Wyatt, Y. Koshka, "Investigation of the Mechanism and Growth Kinetics of Homoepitaxial 4H-SiC Growth Using CH3Cl Carbon Precursor", Materials Science Forum, Vols. 527-529, pp. 171-174, 2006
Online since
October 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Albert A. Burk, Michael J. O'Loughlin, Joseph J. Sumakeris, C. Hallin, Elif Berkman, Vijay Balakrishna, Jonathan Young, Lara Garrett, Kenneth G. Irvine, Adrian R. Powell, Y. Khlebnikov, R.T. Leonard, C. Basceri, Brett A. Hull, Anant K. Agarwal
Abstract:The development of SiC bulk and epitaxial materials is reviewed with an emphasis on epitaxial growth using high-throughput, multi-wafer,...
77
Authors: Krista Chindanon, Huang De Lin, Galyna Melnychuk, Yaroslav Koshka
Abstract:In this work, nitrogen doping was investigated during the low-temperature halo-carbon epitaxial growth of 4H-SiC on Si- and C-faces. The...
159
Authors: Giuseppe Condorelli, Marco Mauceri, Giuseppe Pistone, L.M.S. Perdicaro, Giuseppe Abbondanza, F. Portuese, Gian Luca Valente, Danilo Crippa, Filippo Giannazzo, Francesco La Via
Abstract:A process has been developed to grow multi-epy high doped structure. Trichlorosilane (TCS) and Ethylene have been used as precursor; Nitrogen...
127
Authors: Peder Bergman, I.D. Booker, Louise Lilja, Jawad Ul Hassan, Erik Janzén
Chapter 3: Physical Properties and Characterization of SiC
Abstract:In this report we present homoepitaxial growth of 4H-SiC on the Si-face of nominally on-axis substrates with diameter up to 100 mm in a...
289
Authors: Lin Dong, Guo Sheng Sun, Jun Yu, Guo Guo Yan, Wan Shun Zhao, Lei Wang, Xin He Zhang, Xi Guang Li, Zhan Guo Wang
Chapter 3: Epitaxial Growth 4H SiC
Abstract:We present our recent results on of 10 × 100 mm 4H-SiC epitaxy by a warm-wall planetary reactor at a growth rate of 10 μm/h. The epilayers...
239