Paper Title:
Epitaxial Growth of 4H-SiC (0001) by Sublimation Method Using Horizontal Furnace
  Abstract

A sublimation epitaxial method, referred to as the Closed Space Technique (CST) was adopted to produce thick SiC epitaxial layers for power device applications. We aimed to systematically investigate the dependence of SiC epilayer quality and growth rate during the sublimation growth using the CST method on various process parameters such as the growth temperature and working pressure. The etched surface of a SiC epitaxial layer grown with low growth rate (30 μm/h) exhibited a low etch pit density (EPD) of ~2000 /cm2 and a low micropipe density (MPD) of 2 /cm2. The etched surface of a SiC epitaxial layer grown with a high growth rate (above 100 μm/h) contained a high EPD of ~3500 /cm2 and a high MPD of ~500 /cm2, which indicates that high growth rate aids the formation of dislocations and micropipes in the epitaxial layer.

  Info
Periodical
Materials Science Forum (Volumes 527-529)
Edited by
Robert P. Devaty, David J. Larkin and Stephen E. Saddow
Pages
267-270
DOI
10.4028/www.scientific.net/MSF.527-529.267
Citation
C. K. Park, J. H. An, W. J. Lee, B. C. Shin, S. Nishino, "Epitaxial Growth of 4H-SiC (0001) by Sublimation Method Using Horizontal Furnace", Materials Science Forum, Vols. 527-529, pp. 267-270, 2006
Online since
October 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Kazutoshi Kojima, Hajime Okumura, Satoshi Kuroda, Kazuo Arai, Akihiko Ohi, Hiroyuki Akinaga
Abstract:Homoepitaxial growth was carried out on 4H-SiC on-axis substrate by horizontal hot wall chemical vapor deposition. By using carbon face...
93
Authors: Chi Kwon Park, Gi Sub Lee, Ju Young Lee, Myung Ok Kyun, Won Jae Lee, Byoung Chul Shin, Shigehiro Nishino
Abstract:A sublimation epitaxial method, referred to as the Closed Space Technique (CST) was adopted to produce thick SiC epitaxial layers for power...
153
Authors: Yasuo Hirabayashi, Satoru Kaneko, Kensuke Akiyama
Abstract:The carbonization conditions (acetylene pressure and heating rate) to obtain close carbonized layer covered on Si(001) substrate without...
247
Authors: Kinga Kościewicz, Wlodek Strupiński, Dominika Teklinska, Krystyna Mazur, Mateusz Tokarczyk, Grzegorz Kowalski, Andrzej Roman Olszyna
Abstract:A good selection of growth parameters (in-situ etching, C/Si ratio, growth rate) enables obtaining of ~1nm high steps of epitaxial layers,...
95
Authors: Takashi Aigo, Wataru Ito, Hiroshi Tsuge, Hirokatsu Yashiro, Masakazu Katsuno, Tatsuo Fujimoto, Wataru Ohashi
Chapter 2: SiC Epitaxial Growth
Abstract:4H-SiC epitaxial growth on 2˚ off-axis substrates using trichlorosilane (TCS) is presented. Good surface morphology was obtained for...
101