Paper Title:
Mechanical Models and Numerical Simulation of Rolling Compaction for Metal Powders
  Abstract

The rolling compaction can produce porous or dense strips with special functions. The mechanical behaviors in rolling compaction are hard to predict accurately and efficiently by traditional means. The numerical simulation based on the Finite Element Method (FEM) provides a flexible and efficient way for such problems. This paper introduces three-dimensional (3-D) FEM simulations for the rolling compaction of the iron matrix powders. The elliptical yield criterion, elasto-plastic constitutive relationship and the friction model were analyzed. Simulations were based on the second-developed user subroutine in MSC.Marc. Effects of friction and rolling velocity on the rolling force, distribution of the density and some other parameters were analyzed.

  Info
Periodical
Materials Science Forum (Volumes 532-533)
Edited by
Chengyu Jiang, Geng Liu, Dinghua Zhang and Xipeng Xu
Pages
817-820
DOI
10.4028/www.scientific.net/MSF.532-533.817
Citation
M. J. Liu, W. Xia, Z. Y. Zhou, P. Q. Chen, J. J. Wang, Y. Y. Li, "Mechanical Models and Numerical Simulation of Rolling Compaction for Metal Powders", Materials Science Forum, Vols. 532-533, pp. 817-820, 2006
Online since
December 2006
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Pu Qing Chen, Wei Xia, Zhao Yao Zhou, Wei Ping Chen, Yuan Yuan Li
Abstract:Metal cutting operations constitute a large percentage of the manufacturing activity. One of the most important objectives of metal cutting...
201
Authors: Zou Shun Zheng, Yuan Peng Zhu, Qin Wu Xu, Xuan Hui Qu
Abstract:Metal powders behave high strain rate, viscous effect and first hardening then softening deformation characteristics during the forming...
1154
Authors: Jian Li, Bin Ting Yang
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:Utilization of MSC.Marc FEM software, the typical warm compaction process of molybdeum powder was simulated. Influence of processing...
524
Authors: Jian Li, Bin Ting Yang
Abstract:Utilization of finite element method (FEM) and warm compaction process, study on mechanical theory and FEM simulation of molybdenum powder...
119
Authors: Guo Ning Si, Chen Lan
Chapter 14: Modelling, Analysis and Simulation
Abstract:The finite element method was conducted to simulate the pharmaceutical powder compression process by using Drucker–Prager Cap model and...
1403