Paper Title:
Fatigue Behaviour of Railway Wheel Steels under Constant and Variable Amplitude Loading
  Abstract

In this paper, the influence of the microstructure on the fatigue behaviour of specimens from defined rim positions of original railway wheels R7 (SAE 1050) and tyres B6 (SAE 1065) is characterised under constant and variable amplitude loading. Due to the industrial heat treatment and the component size, the ferrite fraction and the cementite lamellae spacing of the ferriticpearlitic microstructures increase with increasing tread distance. The microstructural gradients influence the fatigue behaviour in a characteristic manner. Mechanical stress-strain hysteresis, temperature and electrical resistance measurements were performed. Temperature and electrical resistance data represent the actual fatigue state in highly stressed volume parts and are not related to a gauge length. Furthermore the electrical resistance is qualified to detect a proceeding fatigue damage in load-free specimens and components. For variable amplitude loading a new testing procedure was applied, which combines any kind of near-service load spectrum with short single step measuring sequences. The plastic strain amplitude, the temperature and the electrical resistance data of each single step sequence are plotted in cyclic ‘deformation’ curves and represent the sum of microstructural changes caused by near-service loading. The substitution of the plastic strain amplitude by the changes of the temperature and the electrical resistance leads to modified Morrow and Manson-Coffin curves. Electron microscopic investigations allow to interpret the measured fatigue data on the basis of microstructural details.

  Info
Periodical
Materials Science Forum (Volumes 537-538)
Edited by
J. Gyulai and P.J. Szabó
Pages
473-480
DOI
10.4028/www.scientific.net/MSF.537-538.473
Citation
F. Walther, D. Eifler, "Fatigue Behaviour of Railway Wheel Steels under Constant and Variable Amplitude Loading ", Materials Science Forum, Vols. 537-538, pp. 473-480, 2007
Online since
February 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Shahrum Abdullah, Ahmad Kamal Ariffin
Abstract:This paper describes the laboratory accelerated fatigue tests of BS 080A42 steel using the shortened variable amplitude (VA) loading...
1023
Authors: Jaroslav Polák, Martin Petrenec
Abstract:The fatigue properties of ferritic-pearlitic-bainitic steel using specimens produced from massive forging were measured in stress controlled...
577
Authors: Shu Ying Yin, Li Jia Chen, Xin Wang
Building Materials
Abstract:In order to identify the influence of solid solution, aging and solid solution plus aging treatments on the low-cycle fatigue behavior of the...
883
Authors: Ewa Marcisz, Adam Niesłony, Tadeusz Łagoda
Chapter 1: Fatigue Life Prediction
Abstract:The paper presents the concept of division of the total strain amplitudes. Simulations were performed for high-alloy steel X6NiCr3220 for...
43
Authors: Yu Li Gu, Yu Huai He, Chang Kui Liu, Chun Hu Tao
Chapter 2: Applications of Materials in Manufacturing Technologies, Materials Science and Engineering
Abstract:Low cycle fatigue failure tests of the powder metallurgical nickel based superalloy FGH96 at 550°C and 720°C were carried out under total...
418