Paper Title:
Microstructure and Abrasive Wear Studies of Laser Clad Al-Si/SiC Composite Coatings
  Abstract

Surface coatings of Al-Si/SiC metal-matrix composites were deposited on Al-7 wt. % Si alloy substrates by laser cladding. The microstructure of the coatings was characterized by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microstructure of the coating material is profoundly influenced by the processing parameters used, in particular by the particle injection velocity and by the specific energy. When the injection velocity is low or specific energy is high excessive dissolution of SiC in the melt pool occurs. The microstructure of the coatings presents partially dissolved SiC particles, and considerable proportions of Al4SiC4 plates and faceted Si equiaxed crystals dispersed in a α-Al+Si eutectic matrix. On the contrary for high injection velocity or low specific energy dissolution of SiC is very limited and the microstructure of the coatings consists essentially of undissolved SiC particles in a matrix consisting of primary α-Al dendrites and α-Al+Si eutectic. Abrasive wear tests were performed on the coatings using a ball cratering device and a 35 wt. % suspension of 4.25 μm average diameter SiC particles in water as abrasive. Coatings prepared with a high specific energy present an average hardness of 248 HV and an average abrasive wear rate of 17.4x10-5 mm3/m. Coatings deposited with a low specific energy exhibit an average hardness of 117 HV and an average abrasive wear rate of 4.3 x10-5 mm3/m.

  Info
Periodical
Materials Science Forum (Volumes 537-538)
Edited by
J. Gyulai and P.J. Szabó
Pages
89-95
DOI
10.4028/www.scientific.net/MSF.537-538.89
Citation
R. Anandkumar, R. Colaço, V. Ocelík, J. T.M. de Hosson, R. Vilar, "Microstructure and Abrasive Wear Studies of Laser Clad Al-Si/SiC Composite Coatings", Materials Science Forum, Vols. 537-538, pp. 89-95, 2007
Online since
February 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Rong Tu, Wenjun Li, Takashi Goto
Abstract:The TiC-TiB2-SiC system was a ternary eutectic, whose eutectic composition was 34TiC-22TiB2-44SiC (mol%). A TiC-TiB2-SiC ternary eutectic...
1057
Authors: Mohammad Moazami-Goudarzi, Farshad Akhlaghi
Abstract:In the present study the effect of Mg addition on the characteristics of Al/SiC nanocomposite powder particles produced via a relatively new...
420
Authors: You Jun Lu, Hong Fang Shen, Yan Ming Wang
Composites
Abstract:High-temperature mechanical properties, machinability, oxidation resistance and thermal shock resistance of different content of carbon...
276
Authors: Vipin Sharma, Suresh Kumar, O.P. Pandey
Chapter 11: Tribology and Wear
Abstract:The present study aims to analyze the effect of particle size on nature of microstructural features and wear behavior of composite. Stir...
564
Authors: Jun Li, Wen Jie Yuan, Cheng Ji Deng, Hong Xi Zhu
Chapter 12: Ceramic, Refractory and Strong Materials
Abstract:Effect of different sintering additives on reaction-bonded Si3N4/SiC composite ceramics under pressureless was investigated. Si3N4/SiC...
2349