Paper Title:
Novel Separation Technique of Particle Reinforced Metal Matrix Composites by Fused Deposition Method
  Abstract

To develop a novel separation technique of matrix alloys from metal matrix composite, separation experiments for various kinds of particle reinforced metal matrix composites (PRMMCs) were carried out. The Al-4mass%Cu alloy, Al-7mass%Si alloy and cast iron were used as matrix. The SiC particles (particle size: 75μm) and Al2O3 particles (particle size: 120μm) were used as reinforcement. The PRMMC specimen was placed in a silica tube container with a small nozzle (nozzle size: 0.75mm) at the bottom and was melted by H.F. induction heating. Then the molten PRMMC specimen was forced to flow out through the nozzle by applying a certain pressure of Ar gas. Most of the molten matrix alloy flowed out through the nozzle and the remainder in the container consisted of the reinforcements and a part of the matrix alloy. The amount of separated matrix alloy increased with decreasing the volume fraction of reinforcement particles in PRMMC specimens. With decreasing the fabrication temperature from 1273K to 1073K, the amount of matrix alloy separated from SiCP/Al-7mass%Si alloy composites increased. It is considered that a reaction layer formed on the surface of SiC particles at 1273K improves the wettability between the molten matrix alloy and SiC particle, which prevents the separation of molten matrix alloy from reinforcements. On the other hand, the amount of separated matrix alloy from 20vol% Al2O3P/cast iron composites was very high due to no reaction layer formed at interface between Al2O3 particle and cast iron.

  Info
Periodical
Materials Science Forum (Volumes 539-543)
Main Theme
Edited by
T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran
Pages
1028-1032
DOI
10.4028/www.scientific.net/MSF.539-543.1028
Citation
M. Mizumoto, T. Ohgai, A. Kagawa, "Novel Separation Technique of Particle Reinforced Metal Matrix Composites by Fused Deposition Method", Materials Science Forum, Vols. 539-543, pp. 1028-1032, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hyeon Taek Son, J.M. Hong, Ik Hyun Oh, Jae Seol Lee, T.S. Kim, Kouichi Maruyama
Abstract:Mg97Zn1Y2 alloy powders were prepared from gas atomization process, followed by consolidation using spark plasma sintering (SPS) process....
1517
Authors: N. R. Ha, Z. X. Yang, Kyu Hong Hwang, J. K. Lee
Abstract:Pure Titanium alloys are superiorities of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy...
177
Authors: Xiao Ping Luo, Lan Ting Xia, Ming Gang Zhang
Abstract:The effect of Cd and Sb addition on the microstructural and mechanical properties of as-cast AZ31 alloys was investigated and compared. The...
197
Authors: Chang Jiang Song, Yuan Yi Guo, Liang Zhu, Ke Feng Li, Min Yang, Qi Jie Zhai
Abstract:High chromium cast iron alloys are widely used to produce wear resistant components. However, formation of the large carbides restricts their...
44
Authors: Rupa Dasgupta, Satyabrata Das, Amol Kumar Jha
Friction and Wear in Material Processing
Abstract:Metal Matrix Composite made from Al-7075 based alloy dispersed with 10% SiC particles through the liquid metallurgy route were evaluated for...
555