Paper Title:
Thermo-Mechanical Fatigue Behaviour of the Gamma-Titanium Aluminide TNB-V5 with Near-Gamma Microstructure
  Abstract

The efficiency of aircraft and industrial gas turbines and combustion engines depends on the maximum operation temperature and, therefore, on the properties of the commercial high temperature materials. In the temperature range 500°C to 750°C γ-titanium aluminides especially alloys of the third generation represent an attractive alternative to the established nickel-base superalloys which have the double density. Due to superimposed cyclic thermal and cyclic mechanical loadings during start-up and shut-down operations structural components in gas turbines and combustion engines may not only be exposed to isothermal but also to thermo-mechanical fatigue (TMF). In this study the cyclic deformation and fatigue behaviour under thermo-mechanical load of the γ-TiAl alloy TNB-V5 with near-gamma microstructure is evaluated. To set a fatigue-life relation strain-controlled thermo-mechanical fatigue tests were carried out with two different strain ranges, different temperature-strain cycles and different temperature ranges from 400°C to 800°C. Additional low-cycle fatigue (LCF) tests were performed at 400°C, 600°C and 800°C for comparison. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives of the tests are presented. The shortest fatigue lives are always observed in out-of phase (OP) tests, the longest in in-phase (IP) tests. Clockwise-diamond (CD) and counter-clockwise diamond (CCD) testing yield similar fatigue lives intermediate between those of OP and IP tests. For a general life prediction the double-logarithmic plot of the damage parameter by Smith, Watson and Topper vs. fatigue life is well suitable.

  Info
Periodical
Materials Science Forum (Volumes 539-543)
Main Theme
Edited by
T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran
Pages
1559-1564
DOI
10.4028/www.scientific.net/MSF.539-543.1559
Citation
M. Roth, H. Biermann, "Thermo-Mechanical Fatigue Behaviour of the Gamma-Titanium Aluminide TNB-V5 with Near-Gamma Microstructure", Materials Science Forum, Vols. 539-543, pp. 1559-1564, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Takehiko Takahashi, Susumu Hioki, Ikuo Shohji, Osamu Kamiya
Abstract:The low-cycle fatigue behavior on Sn-0.7Cu lead-free solder as-cast and Sn-Pb eutectic solder as-cast were investigated at a strain rate...
115
Authors: Belen Moreno, Pablo Lopez-Crespo, Antonio González-Herrera, Jose Zapatero
Abstract:Many mechanical components are subjected to multiaxial fatigue. These conditions are typically coming from external loads, the geometry of...
41
Authors: Yu Li Gu, Yu Huai He, Chang Kui Liu, Chun Hu Tao
Chapter 2: Applications of Materials in Manufacturing Technologies, Materials Science and Engineering
Abstract:Low cycle fatigue failure tests of the powder metallurgical nickel based superalloy FGH96 at 550°C and 720°C were carried out under total...
418
Authors: Justin O. Karl, Andrew T. Copeland, Amy K. Besio
Chapter 9: Physical Properties of Materials in Mechanical Engineering
Abstract:The behavior of parts subjected to simultaneous thermal and mechanical fatigue loads is an area of research that carries great significance...
838