Paper Title:
Development of Aluminium Alloys with Ultimate Recrystallisation Resistance
  Abstract

In the present work the precipitation behaviour and recrystallisation resistance of Alalloys containing Hf, Sc and Zr in different concentrations and combinations have been investigated. Special focus has been put on the Hf-containing alloys, as one of the objectives of this work was to find out if Hf can be used as a replacement for Sc. Additions of Sc, either alone or in combination with Zr, leads to the formation of coherent and homogeneously distributed dispersoids, which very efficiently inhibit recrystallisation. Despite these attractive properties, the high price of Sc has limited its use as an alloying element in aluminium. The present investigation has revealed that Hf cannot fully replace Sc, as only heterogeneous dispersoid distributions are obtained in the absence of Sc, i.e. in regions where the number density is low the alloys would still be prone to recrystallisation. However, as an extra addition to the already remarkably stable Sc+Zr-containing alloys, Hf can lead to further improvements and consequently open for the use of aluminium alloys at very high temperatures. Al3(Sc,Zr,Hf)-dispersoids were present at the largest f/r-ratios and also displayed lower coarsening rates than Al3(Sc,Zr)-dispersoids. Very promising results were obtained for an Al-Hf-Sc-Zr alloy, which maintained mainly an unrecrystallised structure after extrusion and large degrees of cold rolling.

  Info
Periodical
Materials Science Forum (Volumes 539-543)
Main Theme
Edited by
T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran
Pages
167-172
DOI
10.4028/www.scientific.net/MSF.539-543.167
Citation
H. Hallem, B. Forbord, K. Marthinsen, "Development of Aluminium Alloys with Ultimate Recrystallisation Resistance", Materials Science Forum, Vols. 539-543, pp. 167-172, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jeong Min Kim, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract:Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the...
374
Authors: Zhi Min Zhang, Qiang Wang, B.C. Li, X. Zhang
Abstract:Warm compression tests of AZ31 Mg alloy were carried out at five temperatures in 30°C intervals from 210°C to 330°C. The samples of...
1813
Authors: M. Kolář, Vladivoj Očenášek, J. Uhlíř, Ivana Stulíková, Bohumil Smola, Martin Vlach, V. Neubert, K. Šperlink
Abstract:The influence of plastic deformation and heat-treatment on the precipitation of Al3(Sc, Zr) particles and the effect of these precipitates...
357
Authors: O.A. Chikova, B.V. Ovsyannikov, P.L. Reznik
Chapter 1: Functional and Special Structural Materials, Technologies of Coatings, Strengthening and Hardening
Abstract:We studied the dissolution of zirconium in the molten alloy AlMg6Mn1. Zirconium is introduced into the melt in the form of the ligature...
243
Authors: Diana Yuzbekova, Vladislav Kulitskiy, Anna Mogucheva, Rustam Kaibyshev
Chapter 2: Contributed Papers
Abstract:Influence of friction stir welding (FSW) on microstructure of an Al-4.57Mg-0.35Mn-0.2Sc-0.09Zr (wt. pct.) alloy was studied. Following...
2249