Paper Title:
Mechanical Response of Porous Copper Manufactured by Lost Carbonate Sintering Process
  Abstract

This paper investigated the mechanical response of porous copper manufactured by LCS under three-point bending and Charpy impact conditions. The effects of the compaction pressure and K2CO3 particle size used in producing the porous copper samples and the relative density of the samples were studied. The apparent modulus, flexural strength and energy absorption capacity in three-point bending tests increased exponentially with increasing relative density. The impact strength was not markedly sensitive to relative density and had values within 7 – 9 kJ/m2 for the relative densities in the range 0.17 – 0.31. The amount of energy absorbed by a porous copper sample in the impact test was much higher than that absorbed in the three-point bending test, impling that loading strain rate had a significant effect on the deformation mechanisms. Increasing compaction pressure and increasing K2CO3 particle size resulted in significant increases in the flexural strength and the bending energy absorption capacity, both owing to the reduced sintering defects.

  Info
Periodical
Materials Science Forum (Volumes 539-543)
Main Theme
Edited by
T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran
Pages
1863-1867
DOI
10.4028/www.scientific.net/MSF.539-543.1863
Citation
X.F. Tao, L. P. Zhang, Y.Y. Zhao, "Mechanical Response of Porous Copper Manufactured by Lost Carbonate Sintering Process", Materials Science Forum, Vols. 539-543, pp. 1863-1867, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Robert Frykholm, Benjamin Brash
Chapter 8: Cost Efficient and Specific Techniques
Abstract:Titanium based alloys show very high strength to density ratio, and could be the choice of material for a wide range of applications. By...
369