Paper Title:
Kinetics of the Austenite-to-Ferrite Phase Transformation - From the Intrinsic to an Effective Interface Mobility
  Abstract

Recent studies indicate that the austenite(γ)-to-ferrite(α) transformation kinetics in low alloyed steels is solely controlled by the intrinsic mobility of the interface at least in the initial stages of ferrite growth. Then, diffusion processes in the interface significantly retard ferrite growth, so that bulk diffusion of the fast diffusing interstitial component carbon becomes relevant. Two series of dilatometer tests, one from a low to ultra-low carbon steel [1] (alloy A) and the other from an Fe-Mn steel [2] (alloy B), are considered. In case of alloy A the first stage of the transformation kinetics is apparently controlled by the intrinsic interface mobility, whereas in the second stage carbon diffusion in the interface and in the bulk material comes into play. The transition region can be modeled by an effective mobility, which depends on the interface velocity. In the second stage the interface mobility depends on the temperature only. In case of alloy B a hierarchical model allows for a direct estimation of the intrinsic mobility. The numerical results indicate that the interface mobility also changes from an intrinsic mobility at the initial stage of the transformation to an effective mobility due to solute drag during the transformation process.

  Info
Periodical
Materials Science Forum (Volumes 539-543)
Main Theme
Edited by
T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran
Pages
2570-2575
DOI
10.4028/www.scientific.net/MSF.539-543.2570
Citation
E. Gamsjäger, "Kinetics of the Austenite-to-Ferrite Phase Transformation - From the Intrinsic to an Effective Interface Mobility", Materials Science Forum, Vols. 539-543, pp. 2570-2575, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ivo Stloukal, Jiří Čermák
Abstract:Coefficient of 65Zn heterodiffusion in Mg17Al12 intermetallic and in eutectic alloy Mg - 33.4 wt. % Al was measured in the temperature...
189
Authors: Yu Dong Fu, Gang Wang, Chen Liu, Qing Fen Li
Abstract:In the present paper, the non-equilibrium grain-boundary segregation of P atom was studied in low alloy steels subjected to a low tensile...
396
Authors: Sergiy V. Divinski, Boris S. Bokstein
Abstract:Some unresolved problems of grain boundary diffusion – restrictions of Fisher-Gibbs model, refinement of the conditions for B- and C-regimes,...
1
Authors: Renata Abdallah Nogueira, Carlos Roberto Grandini
Abstract:Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion...
702