Paper Title:
Change of Young's Modulus of Cold-Deformed Aluminum AA 1050 and of AA 2024 (T65): A Comparative Study
  Abstract

The knowledge of some mechanical properties of materials and their changes with thermal treatments and/or mechanical treatments are essential to obtain the best results during simulation of processes. In this paper, changes of Young's modulus at room temperature of colddeformed aluminum AA1050 carried out in a tension machine and changes of Young’s modulus and Poisson’s ratio of AA2024 (T6 and T65) have been determined. The elastics constants have been measured by the ultrasound technique in AA2024 alloy and by tensile test in AA1050. In this alloy, the Young's modulus (E) diminishes during the first step of deformation and then increases with the successive cold working. Changes in Young's modulus measured are around 6-8%. In AA2024, the Young's modulus change is about 3% between the annealed and quenched alloy (minimum value); during aging the E parameter increases with respect to quenching. These changes are correlated with the structural changes during thermal treatments. In AA2024, the E parameter remains almost constant during cold-working after the aging treatment. Poisson’s ratio of this alloy remains almost constant in all the treatments. These results are also correlated with the dislocations arrangement in both materials. This behaviour is also compared with cold-deformed pure iron in a tensile test. These results confirm that aluminum AA1050 present similar behaviour than it was observed for pure iron.

  Info
Periodical
Materials Science Forum (Volumes 539-543)
Main Theme
Edited by
T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran
Pages
293-298
DOI
10.4028/www.scientific.net/MSF.539-543.293
Citation
A. Villuendas, A. Roca, J. Jorba, "Change of Young's Modulus of Cold-Deformed Aluminum AA 1050 and of AA 2024 (T65): A Comparative Study", Materials Science Forum, Vols. 539-543, pp. 293-298, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhen Tao Yu, Lian Zhou, Lijuan Luo, Maohong Fan, Yanyan Fu
Abstract:The effects of alloying elements such as Mo, Sn, Zr, Nb, deforming-rate, solid solution and aging treatment on mechanical property and...
595
Authors: Zhi Guo Chen, Zi Qiao Zheng, Dong Feng Han
Abstract:The hot deformation behaviors and microstructure in Al-Cu-Li alloy containing small amount of Ag and Mg were investigated by transmission...
1925
Authors: Zhen Tao Yu, Gui Wang, Xi Qun Ma, Matthew S. Dargusch, Jian Ye Han, Sen Yu
Abstract:The effects of alloy chemistry and heat treatment on the microstructure and mechanical properties of Ti-Nb-Zr-Mo-Sn near  type titanium...
303
Authors: Yong Xue, Zhi Min Zhang, Li Hui Lang, Li Li
Abstract:In the present paper a research has been made on the effect of aging on the microstructure and mechanical properties of AZ80 and ZK60 wrought...
560
Authors: N.I. Vlasova, V.S. Gaviko, A.G. Popov, N.N. Shchegoleva, L.A. Stashkova, Dmitriy Gunderov, Xavier Sauvage
Abstract:Equiatomic FePd alloy in the ordered state has been processed by means of high-pressure torsion deformation (HPTD) and then annealed. X-ray...
392