Paper Title:
Biodegradable Fiber Reinforced Ti Composite Fabricated by Spark Plasma Sintering Method
  Abstract

Ti and Ti alloys are particularly attractive materials as the metallic implant-material. This is because that these alloys have low shear modulus and the good biological compatibility with bone. However, interfacial adhesion ability of bone and Ti alloy is low. As improvement method of the interfacial adhesion ability, bioaffinity material like hydroxyapatite has been coated on surface of the Ti alloys. However, such bioaffinity materials have low strength and wear resistance. In this study, Ti composites containing biodegradable poly-L-lactic-acid (PLLA) fiber were fabricated by spark plasma sintering (SPS) method. The PLLA fiber plays a role as reinforcement in Ti matrix, and can be gradually decomposed inside body with progress of time. By the decomposition of PLLA, pore is generated in Ti matrix, and bone simultaneously penetrates into the pore. Therefore, tightly bond between bone and Ti matrix can be expected. Using the Ti-PLLA composites fabricated by SPS method, microstructural observation and mechanical tests were performed. It was found that Ti-PLLA composite has laminate-layer structure with plate-like shape PLLA. Hardness and wear behavior of Ti-PLLA composite has anisotropy due to its structure. However, strength of the Ti-PLLA composite is low because of the imperfect sintering of Ti matrix. Since sintering of Ti matrix can be improved by changing the temperature of SPS, Ti-PLLA composite with anisotropic mechanical properties can be expected by SPS method.

  Info
Periodical
Materials Science Forum (Volumes 539-543)
Main Theme
Edited by
T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran
Pages
3201-3206
DOI
10.4028/www.scientific.net/MSF.539-543.3201
Citation
H. Sato, S. Umaoka, Y. Watanabe, I. S. Kim, M. Kawahara, M. Tokita, "Biodegradable Fiber Reinforced Ti Composite Fabricated by Spark Plasma Sintering Method", Materials Science Forum, Vols. 539-543, pp. 3201-3206, 2007
Online since
March 2007
Export
Price
$35.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: F. Romero, Vicente Amigó, M.D. Salvador, A. Vicente
Abstract:Titanium metal matrix composites were produced. The powder metallurgy route applied was a conventional route consisting of blending titanium...
817
Authors: Yan Jun Wang, Bin Wang, Li Ying Yang, Shou Ren Wang
Abstract:High speed steel based ceramic preforms with three-dimensionally interpenetrated micropores were fabricated using the mixture of TiH2, CaCO3...
625
Authors: Xian Liang Zhou, Duo Sheng Li, Ai Hua Zou, Xiao Zhen Hua, Zhi Guo Ye, Qing Jun Chen
New Functional Materials
Abstract:SiCp/Al composites were fabricated by ceramic mold freedom infiltration and pressureless infiltration, respectively. The microstructure and...
658
Authors: Wan Chang Sun, He Jun Li, Qian Gang Fu, Shou Yang Zhang
Abstract:PAN-carbon fibers were pretreated using three methods. 2D-C/C composites were fabricated by a rapid chemical liquid-vaporized infiltration...
482
Authors: Shi Zhong Wei, Liu Jie Xu, Guo Shang Zhang, Ji Wen Li, Bao Zhu Dai
Chapter 3: Advanced Manufacturing Technology
Abstract:Mo-based composites with Al2O3 particles were developed in order to enhance the wear resistance of molybdenum alloys....
467