Paper Title:
Enlarging the Temperature Range for Maximum Wear Resistance of TiNi Alloy Using a NTE Phase
  Abstract

The near-equiatomic TiNi alloy has been demonstrated to possess high wear resistance, which largely benefits from its pseudoelasticity (PE). However, the PE occurs only in a small temperature range, which makes the wear resistance of this alloy unstable as temperature changes, caused by environmental instability or frictional heating. Therefore, enlarging the working temperature of PE could considerably improve this alloy as a novel wear-resistant material. One possible approach is to develop a self-built temperature-dependent internal stress field by taking the advance of the difference in thermal expansion between the pseudoelastic matrix and a reinforcing phase. Such a T-dependent internal stress could adjust the martensitic transformation temperature to respond changes in environmental temperature so that the temperature range of PE could be enlarged, thus leading to a wide temperature range in which the minimum wear loss is retained. Research was conducted to investigate effects of an added second phase having a negative thermal expansion (NTE) coefficient on the wear resistance of a near-equiatomic TiNi alloy. It was demonstrated that the temperature range of this modified material in which the wear loss dropped was enlarged. In addition, the wear resistance of such a TiNi-matrix composite was on one order of magnitude higher than that of unmodified TiNi alloy.

  Info
Periodical
Materials Science Forum (Volumes 539-543)
Main Theme
Edited by
T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran
Pages
3261-3266
DOI
10.4028/www.scientific.net/MSF.539-543.3261
Citation
I. Radu, D. Y. Li, "Enlarging the Temperature Range for Maximum Wear Resistance of TiNi Alloy Using a NTE Phase", Materials Science Forum, Vols. 539-543, pp. 3261-3266, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jeong Min Kim, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract:Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the...
374
Authors: E.P. Masuku, Gonasagren Govender, L. Ivanchev, Heinrich Möller
Abstract:Rheocasting of alloys A206 and A201 was investigated in this study. Conical bars with different silver contents were produced using CSIR...
151
Authors: Trevor Sawatzky, Dong Yi Seo, H. Saari, D. Laurin, Dae Jin Kim, Young Won Kim
Abstract:The microstructure and creep properties of two powder metallurgy (PM) ‘beta gamma’ titanium aluminide alloys are presented. Alloy powders...
500
Authors: Katarzyna Bałdys, Grzegorz Dercz, Łukasz Madej
Abstract:The ferromagnetic shape memory alloys (FSMA) are relatively the brand new smart materials group. The most interesting issue connected with...
171
Authors: Hong Wei Liu, Yon Gan Zhang, Jian Bo Zhang, Bao Hong Zhu, Feng Wang, Zhi Hui Li, Xi Wu Li, Bai Qing Xiong
Chapter 1: Materials Properties
Abstract:Microstructural characterization of Al-Cu-Mg-Ag alloy ageing at low and elevated temperature were investigated by differential scanning...
1225