Paper Title:
Morphological Evolutions in Steels during Continuous Rapid Heating
  Abstract

The influence of high energy density sources on morphological changes in steels was studied by a physical simulation. Strips of carbon steels were subjected to heat cycles including continuous rapid heating to temperatures between 400 and 1200°C and immediate water quenching. The heat cycles were carried out by passing a high intensity electrical current through trapezoidal specimens in a special device allowing to obtain heating rates up to 10000°/s with an excellent temperature control. Real-time temperature recordings were drawn so as to define some characteristic temperatures of continuous austenitization. The evolution of the morphology, initially composed of ferrite and martensite, was examined by means of light and electron (SEM and TEM) microscopy using standard techniques. The results of the examination were related to microhardness measurements. Three distinct stages of the morphological evolution were finally analyzed: - T > AC1 - Beginning of austenite formation in zones of as-tempered martensite, mostly at former austenite grain boundaries. - AC1 << T < AC3 - Development of irregular lath-shaped interface between the growing (austenite) and shrinking (ferrite) phases. - T > AC3 - Final massive transformation of supersaturated ferrite areas.

  Info
Periodical
Materials Science Forum (Volumes 539-543)
Main Theme
Edited by
T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran
Pages
4669-4674
DOI
10.4028/www.scientific.net/MSF.539-543.4669
Citation
W. Kaluba, T. Kaluba, A. Zielinska-Lipiec, "Morphological Evolutions in Steels during Continuous Rapid Heating", Materials Science Forum, Vols. 539-543, pp. 4669-4674, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: J.S. Kang, S.S. Ahn, C.Y. Yoo, Chan Gyung Park
Abstract:In the present study, focused ion beam (FIB) technique was applied to make site-specific TEM specimens and to identify the 3-dimensional...
73
Authors: Maria Jesus Santofimia, Lie Zhao, Yoshiki Takahama, Jilt Sietsma
Abstract:The quenching and partitioning (Q&P) process is a novel heat treatment for the development of advanced high strength steels that is raising...
3485
Authors: Jie Shi, Wen Quan Cao, Han Dong
Abstract:In this study a C-Mn High Strength Low Alloy steel (HSLAs) was processed by quenching and austenite reverted transformation during annealing...
238
Authors: Sadegh Moeinifar
Abstract:The objective of this paper is to study the influence of second peak temperature during simulated welding on properties of the subcritically...
1850
Authors: Xin Jie Di, Dan Xu, Yong Chang Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The microstructure and carbide precipitate of simulated coarse grain heat affected zone(CGHAZ) in modified high Cr ferritic heat-resistant...
1320