Paper Title:
In Vivo and In Vitro Evaluation of Coated HAp Films with Different Surface Morphology
  Abstract

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.

  Info
Periodical
Materials Science Forum (Volumes 539-543)
Main Theme
Edited by
T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran
Pages
710-715
DOI
10.4028/www.scientific.net/MSF.539-543.710
Citation
K. Kuroda, R. Ichino, M. Okido, "In Vivo and In Vitro Evaluation of Coated HAp Films with Different Surface Morphology", Materials Science Forum, Vols. 539-543, pp. 710-715, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Anke Bernstein, Renate Gildenhaar, Doreen Nöbel, Georg Berger
623
Authors: Li Ping Wang, Bang Cheng Yang, Ji Yong Chen, Xing Dong Zhang
Abstract:The bioactivities of titanium oxide film on titanium surface received from different chemical treatment methods were studied in SBF in vitro...
545
Authors: Ana Cristina P. Machado, Marize Varella de Oliveira, Robson Pacheco Pereira, Yasmin R. Carvalho, Carlos Alberto Alves Cairo
Abstract:The osseointegration of porous titanium implants was evaluated in the present work. Implants were fabricated from ASTM grade 2 titanium by a...
179
Authors: G. Daculsi, E. Goyenvalle, E. Aguado
Abstract:It was demonstrated that microstructured surfaces improve cell spreading and bone ingrowth. Particularly, the surface roughness modulates the...
795