Paper Title:
Effect of Thermo-Mechanical Processing on Microstructure and Elastic Modulus of Metastable Ti-Nb-Si Alloys for Biomedical Application
  Abstract

This work describes the effect of microstructures on elastic modulus in Ti-26Nb-xSi alloy (x=0.5~1.5at.%) prepared by arc melting, cold rolling and recrystallization heat treatment. OM observation and x-ray diffraction analysis revealed that the microstructure of as-quenched sample appeared to mixture appearance consisting of mostly bcc-structured β phase and small amount of orthorhombic-structured α″ phase. After cold rolling, elongated structure parallel to the rolling direction was observed, and equiaxed structure with the average grain size of about 20~30μm was developed for the sample after recrystallization heat treatment. In as-quenched sample randomly distributed feature of pole figure was characterized without showing a specific texture component. In cold-rolled sample α-fiber, γ-fiber and rotated cube texture components were detected. After recrystallization heat treatment the intensity of α-fiber texture component was markedly decreased, while the rotated cube component becomes sharpened and γ-fiber component remains relatively unchanged. The elastic modulus increased by cold rolling and then decreased by recrystallization over the entire chemical composition range investigated. The variation of elastic modulus values was interpreted in terms of changes in texture components depending on thermomechanical processing.

  Info
Periodical
Materials Science Forum (Volumes 544-545)
Edited by
Hyungsun Kim, Junichi Hojo and Soo Wohn Lee
Pages
271-274
DOI
10.4028/www.scientific.net/MSF.544-545.271
Citation
H. S. Kim, W. Y. Kim, "Effect of Thermo-Mechanical Processing on Microstructure and Elastic Modulus of Metastable Ti-Nb-Si Alloys for Biomedical Application", Materials Science Forum, Vols. 544-545, pp. 271-274, 2007
Online since
May 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhen Tao Yu, Lian Zhou, Lijuan Luo, Maohong Fan, Yanyan Fu
Abstract:The effects of alloying elements such as Mo, Sn, Zr, Nb, deforming-rate, solid solution and aging treatment on mechanical property and...
595
Authors: Zhi Min Zhang, Qiang Wang, B.C. Li, X. Zhang
Abstract:Warm compression tests of AZ31 Mg alloy were carried out at five temperatures in 30°C intervals from 210°C to 330°C. The samples of...
1813
Authors: M. Kolář, Vladivoj Očenášek, J. Uhlíř, Ivana Stulíková, Bohumil Smola, Martin Vlach, V. Neubert, K. Šperlink
Abstract:The influence of plastic deformation and heat-treatment on the precipitation of Al3(Sc, Zr) particles and the effect of these precipitates...
357
Authors: Zhen Tao Yu, Gui Wang, Xi Qun Ma, Matthew S. Dargusch, Jian Ye Han, Sen Yu
Abstract:The effects of alloy chemistry and heat treatment on the microstructure and mechanical properties of Ti-Nb-Zr-Mo-Sn near  type titanium...
303
Authors: Jung Hwa Seo, Dong Geun Lee, Cheng Lin Li, Xu Jun Mi, Yong Tae Lee
Chapter 1: Advanced Materials and Technology on Metallurgy
Abstract:Microstructure characterization and hardening behavior of a new designed Ti-12.1Mo-1Fe alloy during solution and aging treatment was...
37